PyTorch inplace字段 对PyTorch中inplace字段的全面理解
冷月葬婲魂 人气:0想了解对PyTorch中inplace字段的全面理解的相关内容吗,冷月葬婲魂在本文为您仔细讲解PyTorch inplace字段的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:PyTorch,inplace字段,下面大家一起来学习吧。
例如
torch.nn.ReLU(inplace=True)
inplace=True
表示进行原地操作,对上一层传递下来的tensor直接进行修改,如x=x+3;
inplace=False
表示新建一个变量存储操作结果,如y=x+3,x=y;
inplace=True
可以节省运算内存,不用多存储变量。
补充:PyTorch中网络里面的inplace=True字段的意思
在例如nn.LeakyReLU(inplace=True)中的inplace字段是什么意思呢?有什么用?
inplace=True的意思是进行原地操作,例如x=x+5,对x就是一个原地操作,y=x+5,x=y,完成了与x=x+5同样的功能但是不是原地操作。
上面LeakyReLU中的inplace=True的含义是一样的,是对于Conv2d这样的上层网络传递下来的tensor直接进行修改,好处就是可以节省运算内存,不用多储存变量y。
inplace=True means that it will modify the input directly, without allocating any additional output. It can sometimes slightly decrease the memory usage, but may not always be a valid operation (because the original input is destroyed). However, if you don't see an error, it means that your use case is valid.
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。
加载全部内容