亲宝软件园·资讯

展开

Python pandas数据合并 Python基础之pandas数据合并

小瓶盖的猪猪侠 人气:2
想了解Python基础之pandas数据合并的相关内容吗,小瓶盖的猪猪侠在本文为您仔细讲解Python pandas数据合并的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Python,pandas数据合并,Python,pandas,下面大家一起来学习吧。

一、concat

concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
       keys=None, levels=None, names=None, verify_integrity=False)

axis: 需要合并链接的轴,0是行,1是列join:连接的方式 inner,或者outer

二、相同字段的表首尾相接

在这里插入图片描述

#现将表构成list,然后在作为concat的输入
In [4]: frames = [df1, df2, df3]
 
In [5]: result = pd.concat(frames)

要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

在这里插入图片描述

也可以通过传入字典来增加分组键

pieces = {'x': df1, 'y': df2, 'z': df3}

result = pd.concat(pieces)

三、axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并,是以索引号进行连接的

result = pd.concat([df1, df4], axis=1)

在这里插入图片描述

3.1 join

加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。

result = pd.concat([df1, df4], axis=1, join='inner')

在这里插入图片描述

3.2 join_axes

如果有join_axes的参数传入,可以指定根据那个轴来对齐数据
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接

result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

在这里插入图片描述

四、append

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

result = df1.append(df2)

在这里插入图片描述

五、无视index的concat

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。

在这里插入图片描述

加载全部内容

相关教程
猜你喜欢
用户评论