Python并发请求下限制QPS Python并发请求下限制QPS(每秒查询率)的实现代码
Jiuh-star 人气:0 前两天有一个需求,需要访问某API服务器请求数据,该服务器限制了QPS=2(哈哈应该都知道是哪个服务器了吧_(:з」∠)_),因为QPS很小所以就使用阻塞式请求。后来开通了服务,QPS提高到了20,阻塞式请求满足不了这个QPS了,于是使用了GRequests来并发请求数据,但这里又遇到了一个问题:并发太快,服务器通过发送错误码拒绝了很多数据的响应,造成了资源的浪费。
故在此记录以下几种 节流(Throttle) 方法:
以下均假设有如下包和数据前提:
import grequests urls = [ "https://www.baidu.com", "https://www.google.com" ] requests = [ grequests.get(url) for url in urls ] * 1000 rate = 20 # 表示 20 请求/秒
time.sleep(1)
这是最简单的方法,通过time.sleep(1)阻塞进程来控制每秒并发数量。用公式表达如下:
from time import sleep req_groups = [ requests[i: i+rate] for i in range(0, len(requests), rate) ] ret = [] for req_group in req_groups: ret += grequests.map(req_group) sleep(1) print(ret)
令牌桶(token bucket)方法
这种方法较精确,可以确保误差不超过±1(当然前提是你的电脑和目标服务器都能承受的了高并发)。以下是耗时的公式表示:
from time import time class Throttle: def __init__(self, rate): self.rate = rate self.tokens = 0 self.last = 0 def consume(self, amount=1): now = time() if self.last == 0: self.last = now elapsed = now - self.last if int(elapsed * self.rate): self.tokens += int(elapsed * self.rate) self.last = now self.tokens = ( self.rate if self.tokens > self.rate else self.tokens ) if self.tokens >= amount: self.tokens -= amount else: amount = 0 return amount throttle = Throttle(rate) req_groups = [ requests[i: i+rate] for i in range(0, len(requests), rate) ] ret = [] for req_group in req_groups: ret += grequests.map(req_group) while throttle.consume(): pass # 阻塞 print(ret)
GRequests-Throttle
这是一个使用令牌桶(token bucket)方法进行封装的GRequests修改版,使用方法很简单:
首先安装grequests-throttle(清华镜像源更新较慢,推荐使用阿里镜像源)
pip install grequests-throttle
import grequests_throttle as gt ret = gt.map(requests, rate=rate) print(ret)
总结
如果并发请求数量较小,可以考虑使用time.sleep(1)简单快捷;当并发请求数量较大时,使用令牌桶(token bucket)方法能最大化利用每一秒;如果不想写太多代码,可以使用GRequests-Throttle包进行请求流量控制。
加载全部内容