亲宝软件园·资讯

展开

Python并发请求下限制QPS Python并发请求下限制QPS(每秒查询率)的实现代码

Jiuh-star 人气:0

  前两天有一个需求,需要访问某API服务器请求数据,该服务器限制了QPS=2(哈哈应该都知道是哪个服务器了吧_(:з」∠)_),因为QPS很小所以就使用阻塞式请求。后来开通了服务,QPS提高到了20,阻塞式请求满足不了这个QPS了,于是使用了GRequests来并发请求数据,但这里又遇到了一个问题:并发太快,服务器通过发送错误码拒绝了很多数据的响应,造成了资源的浪费。
  故在此记录以下几种 节流(Throttle) 方法:

  以下均假设有如下包和数据前提:

import grequests

urls = [
 "https://www.baidu.com",
 "https://www.google.com"
]
requests = [
 grequests.get(url)
 for url in urls
] * 1000

rate = 20 # 表示 20 请求/秒

time.sleep(1)

  这是最简单的方法,通过time.sleep(1)阻塞进程来控制每秒并发数量。用公式表达如下:Time=++time.sleep(1)Time = 请求准备时延 + 请求发送时延 + time.sleep(1)Time=请求准备时延+请求发送时延+time.sleep(1)   但是这种方法有一个较小的问题:不精确 。数据量越大,方差越大。

from time import sleep

req_groups = [
 requests[i: i+rate]
 for i in range(0, len(requests), rate)
]

ret = []
for req_group in req_groups:
 ret += grequests.map(req_group)
 sleep(1)

print(ret)

令牌桶(token bucket)方法

  这种方法较精确,可以确保误差不超过±1(当然前提是你的电脑和目标服务器都能承受的了高并发)。以下是耗时的公式表示:Time=++延Time = 请求准备时延 + 请求发送时延 + 令牌桶阻塞时延Time=请求准备时延+请求发送时延+令牌桶阻塞时延 1+延令牌桶阻塞时延 ≈ 1 - 请求准备时延 + 请求发送时延令牌桶阻塞时延≈1−请求准备时延+请求发送时延   这种方法当然也有一点缺陷,CPU看起来会很高(这是由于 while pass),尽管CPU真实使用率很低。

from time import time

class Throttle:
 def __init__(self, rate):
  self.rate = rate
  self.tokens = 0
  self.last = 0
 
 def consume(self, amount=1):
  now = time()
  
  if self.last == 0:
   self.last = now
  
  elapsed = now - self.last

  if int(elapsed * self.rate):
   self.tokens += int(elapsed * self.rate)
   self.last = now
  
  self.tokens = (
   self.rate
   if self.tokens > self.rate
   else self.tokens
  )
  
  if self.tokens >= amount:
   self.tokens -= amount
  else:
   amount = 0
  
  return amount

throttle = Throttle(rate)

req_groups = [
 requests[i: i+rate]
 for i in range(0, len(requests), rate)
]

ret = []
for req_group in req_groups:
 ret += grequests.map(req_group)
 while throttle.consume():
  pass # 阻塞

print(ret)

GRequests-Throttle

  这是一个使用令牌桶(token bucket)方法进行封装的GRequests修改版,使用方法很简单:
  首先安装grequests-throttle(清华镜像源更新较慢,推荐使用阿里镜像源)

pip install grequests-throttle
import grequests_throttle as gt

ret = gt.map(requests, rate=rate)
print(ret)

总结

  如果并发请求数量较小,可以考虑使用time.sleep(1)简单快捷;当并发请求数量较大时,使用令牌桶(token bucket)方法能最大化利用每一秒;如果不想写太多代码,可以使用GRequests-Throttle包进行请求流量控制。

加载全部内容

相关教程
猜你喜欢
用户评论