亲宝软件园·资讯

展开

Python HDFS上传下载Pandas CSV Python连接HDFS实现文件上传下载及Pandas转换文本文件到CSV操作

翱翔的江鸟 人气:0

1. 目标

通过hadoop hive或spark等数据计算框架完成数据清洗后的数据在HDFS上

爬虫和机器学习在Python中容易实现

在Linux环境下编写Python没有pyCharm便利

需要建立Python与HDFS的读写通道

2. 实现

安装Python模块pyhdfs

版本:Python3.6, hadoop 2.9

读文件代码如下

from pyhdfs import HdfsClient
client=HdfsClient(hosts='ghym:50070')#hdfs地址
res=client.open('/sy.txt')#hdfs文件路径,根目录/
for r in res:
 line=str(r,encoding='utf8')#open后是二进制,str()转换为字符串并转码
 print(line)

写文件代码如下

from pyhdfs import HdfsClient
client=HdfsClient(hosts='ghym:50070',user_name='hadoop')#只有hadoop用户拥有写权限
str='hello world'
client.create('/py.txt',str)#创建新文件并写入字符串

上传本地文件到HDFS

from pyhdfs import HdfsClient
client = HdfsClient(hosts='ghym:50070', user_name='hadoop')
client.copy_from_local('d:/pydemo.txt', '/pydemo')#本地文件绝对路径,HDFS目录必须不存在

3. 读取文本文件写入csv

Python安装pandas模块

确认文本文件的分隔符

# pyhdfs读取文本文件,分隔符为逗号,
from pyhdfs import HdfsClient
client = HdfsClient(hosts='ghym:50070', user_name='hadoop')
inputfile=client.open('/int.txt')
# pandas调用读取方法read_table
import pandas as pd
df=pd.read_table(inputfile,encoding='gbk',sep=',')#参数为源文件,编码,分隔符
# 数据集to_csv方法转换为csv
df.to_csv('demo.csv',encoding='gbk',index=None)#参数为目标文件,编码,是否要索引

补充知识:记 读取hdfs 转 pandas 再经由pandas转为csv的一个坑

工作流程是这样的:

读取 hdfs 的 csv 文件,采用的是 hdfs 客户端提供的 read 方法,该方法返回一个生成器。

将读取到的数据按 逗号 处理,变为一个二维数组。

将二维数组传给 pandas,生成 df。

经若干处理后,将 df 转为 csv 文件并写入hdfs。

问题是这样的:

正常的数据:

ZERO,MEAN,STD,CV,INC,OPP,CS,IS_OUTNET

0,9.233,2.445,0.265,1.202,241,1,0

0,8.667,1.882,0.217,1.049,179,1,0

三行数据,正常走流程,没有任何问题。

异常数据:

ZERO,MEAN,STD,CV,INC,OPP,CS,IS_OUTNET,probability,prediction

0,9.233,2.445,0.265,1.202,241,1,0,'[0.9653901649086855,0.03460983509131456]',0.0

0,8.667,1.882,0.217,1.049,179,1,0,'[0.9653901649086855,0.03460983509131456]',0.0

在每一行中都会有一个数组类似的数据,有一对引号包起来,中间存在逗号,不可以拆分。

为此,我的做法如下:

匹配逗号是被成对引号包围的字符串。

将匹配到的字符串中的逗号替换为特定字符。

将替换后的新字符串替换回原字符串。

在将原字符串中的特定字符串替换为逗号。

本来这样做没有什么问题,但是在经由pandas转为csv的时候,发现原来带引号的字符串变为了前后各带三个引号。

源数据:

处理后的数据:

方法如下:

仔细研究对比了下数据,发现数据里的引号其实只是在纯文本文件中用来标识其为字符串,并不应该存在于实际数据中。

而我每次匹配后都是原封不动替换回去,譬如:

源数据:

"[0.9653901649086855,0.03460983509131456]"

匹配替换后:

"[0.9653901649086855${dot}0.03460983509131456]"

这样传给pandas,它就会认为这个数据是带引号的,在重新转为csv的时候,就会进行转义等操作,导致多出很多引号。

所以解决办法就是在替换之前,将匹配时遇到的引号也去掉:

PATTERN = '(?<=(?P<quote>[\'\"]))([^,]+,[^,]+)+?(?=(?P=quote))'

中间 ([^,]+,[^,]+)+? 要用+?,因为必须确定是有这样的组合才可以,并且非贪婪模式,故不可 ? 或者 *?

(ps:为了方便后面引用前面的匹配,我在环视匹配中创建了一个组)

再来个整体效果:

为了说明效果,引用pandas的自带读取csv方法:

可以看到pandas读取出的该位置数据也是字符串,引号正是作为一个字符串声明而存在。

再次修改正则:

def split_by_dot_escape_quote(string):
  """
  按逗号分隔字符串,若其中有引号,将引号内容视为整体
  """
  # 匹配引号中的内容,非贪婪,采用正向肯定环视,
  # 当左引号(无论单双引)被匹配到,放入组quote,
  # 中间的内容任意,但是要用+?,非贪婪,且至少有一次匹配到字符,
  # 若*?,则匹配0次也可,并不会匹配任意字符(环视只匹配位置不匹配字符),
  # 由于在任意字符后面又限定了前面匹配到的quote,故只会匹配到",
  # +?则会限定前面必有字符被匹配,故"",或引号中任意值都可匹配到
  pattern = re.compile('(?=(?P<quote>[\'\"])).+?(?P=quote)')
  rs = re.finditer(pattern, string)
  for data in rs:
    # 匹配到的字符串
    old_str = data.group()
    # 将匹配到的字符串中的逗号替换为特定字符,
    # 以便还原到原字符串进行替换
    new_str = old_str.replace(',', '${dot}')
    # 由于匹配到的引号仅为字符串申明,并不具有实际意义,
    # 需要把匹配时遇到的引号都去掉,只替换掉当前匹配组的引号
    new_str = re.sub(data.group('quote'), '', new_str)
    string = string.replace(old_str, new_str)
  sps = string.split(',')
  return map(lambda x: x.replace('${dot}', ','), sps)
 
 
s = '"2011,603","3510006998","F","5","5","0",""'
print(list(split_by_dot_escape_quote(s)))

运行结果如下:

之前想的正则有些复杂,反而偏离了本意,还是对正则的认识不够深。

以上这篇Python连接HDFS实现文件上传下载及Pandas转换文本文件到CSV操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论