亲宝软件园·资讯

展开

Python 线性回归评价指标 Python 线性回归分析以及评价指标详解

偏执灬 人气:4

废话不多说,直接上代码吧!

"""
# 利用 diabetes数据集来学习线性回归 
# diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况。 
# 数据集中的特征值总共10项, 如下: 
 # 年龄 
 # 性别 
 #体质指数 
 #血压 
 #s1,s2,s3,s4,s4,s6 (六种血清的化验数据) 
 #但请注意,以上的数据是经过特殊处理, 10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围。
 #验证就会发现任何一列的所有数值平方和为1. 
"""
 
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
 
# Load the diabetes dataset
diabetes = datasets.load_diabetes() 
 
# Use only one feature 
# 增加一个维度,得到一个体质指数数组[[1],[2],...[442]]
diabetes_X = diabetes.data[:, np.newaxis,2]
print(diabetes_X)
 
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
 
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
 
# Create linear regression object
regr = linear_model.LinearRegression()
 
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
 
# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
 
# The coefficients 
# 查看相关系数 
print('Coefficients: \n', regr.coef_)
 
 
# The mean squared error 
# 均方差
# 查看残差平方的均值(mean square error,MSE) 
print("Mean squared error: %.2f"
  % mean_squared_error(diabetes_y_test, diabetes_y_pred))
 
 
# Explained variance score: 1 is perfect prediction 
# R2 决定系数(拟合优度)
# 模型越好:r2→1
# 模型越差:r2→0
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
 
 
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
 
plt.xticks(())
plt.yticks(())
 
plt.show()

对于回归模型效果的判断指标经过了几个过程,从SSE到R-square再到Ajusted R-square, 是一个完善的过程:

SSE(误差平方和):The sum of squares due to error

R-square(决定系数):Coefficient of determination

Adjusted R-square:Degree-of-freedom adjusted coefficient of determination

下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!

一、SSE(误差平方和)

计算公式如下:

同样的数据集的情况下,SSE越小,误差越小,模型效果越好

缺点:

SSE数值大小本身没有意义,随着样本增加,SSE必然增加,也就是说,不同的数据集的情况下,SSE比较没有意义

二、R-square(决定系数)

数学理解: 分母理解为原始数据的离散程度,分子为预测数据和原始数据的误差,二者相除可以消除原始数据离散程度的影响

其实“决定系数”是通过数据的变化来表征一个拟合的好坏。

理论上取值范围(-∞,1], 正常取值范围为[0 1] ------实际操作中通常会选择拟合较好的曲线计算R²,因此很少出现-∞

越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好

越接近0,表明模型拟合的越差

经验值:>0.4, 拟合效果好

缺点:

数据集的样本越大,R²越大,因此,不同数据集的模型结果比较会有一定的误差

三、Adjusted R-Square (校正决定系数)

n为样本数量,p为特征数量

消除了样本数量和特征数量的影响

以上这篇Python 线性回归分析以及评价指标详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论