C++ Eigen库计算矩阵特征值及特征向量
人气:0本文主要讲解利用Eigen库计算矩阵的特征值及特征向量并与Matlab计算结果进行比较。
C++Eigen库代码
#include <iostream> #include <Eigen/Dense> #include <Eigen/Eigenvalues> using namespace Eigen; using namespace std; void Eig() { Matrix3d A; A << 1, 2, 3, 4, 5, 6, 7, 8, 9; cout << "Here is a 3x3 matrix, A:" << endl << A << endl << endl; EigenSolver<Matrix3d> es(A); Matrix3d D = es.pseudoEigenvalueMatrix(); Matrix3d V = es.pseudoEigenvectors(); cout << "The pseudo-eigenvalue matrix D is:" << endl << D << endl; cout << "The pseudo-eigenvector matrix V is:" << endl << V << endl; cout << "Finally, V * D * V^(-1) = " << endl << V * D * V.inverse() << endl; } int main() { Eig(); }
计算结果:
最大最小特征值及其索引位置
//maxCoeff //minCoeff int col_index, row_index; cout << D.maxCoeff(&row_index, &col_index) << endl; cout << row_index << " " << col_index << endl;
Matlab 代码
clear all clc A = [1 2 3;4 5 6;7 8 9] [V,D] = eig(A)
Matlab计算结果
使用sort()函数对特征值排序
主成份分析以及许多应用时候,需要对特征值大小排列。
A = magic(6); [V,D] = eig(A) [D_S,index] = sort(diag(D),'descend') V_S = V(:,index)
结果
V = 0.4082 -0.2887 0.4082 0.1507 0.4714 -0.4769 0.4082 0.5774 0.4082 0.4110 0.4714 -0.4937 0.4082 -0.2887 0.4082 -0.2602 -0.2357 0.0864 0.4082 0.2887 -0.4082 0.4279 -0.4714 0.1435 0.4082 -0.5774 -0.4082 -0.7465 -0.4714 0.0338 0.4082 0.2887 -0.4082 0.0171 0.2357 0.7068 D = 111.0000 0 0 0 0 0 0 27.0000 0 0 0 0 0 0 -27.0000 0 0 0 0 0 0 9.7980 0 0 0 0 0 0 -0.0000 0 0 0 0 0 0 -9.7980 D_S = 111.0000 27.0000 9.7980 -0.0000 -9.7980 -27.0000 V_S = 0.4082 -0.2887 0.1507 0.4714 -0.4769 0.4082 0.4082 0.5774 0.4110 0.4714 -0.4937 0.4082 0.4082 -0.2887 -0.2602 -0.2357 0.0864 0.4082 0.4082 0.2887 0.4279 -0.4714 0.1435 -0.4082 0.4082 -0.5774 -0.7465 -0.4714 0.0338 -0.4082 0.4082 0.2887 0.0171 0.2357 0.7068 -0.4082
结语
本人是在实验中利用Eigen库求取最小特征值对应特征向量做PCA分析时使用,曾经再不知道有Eigen库的情况下自己写过矩阵相关运算的模板类,现在接触到Eigen库,就把困扰过自己的问题今天做一个小小总结。
您可能感兴趣的文章:
加载全部内容