python多进程并发demo实例解析
人气:0这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
前言
下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了;
程序涉及计算、文件读写,鉴于计算内容挺多的,就用多进程了(计算密集)。
代码
import pandas as pd from pathlib import Path from concurrent.futures import ProcessPoolExecutor parse_path = '/data1/v-gazh/CRSP/dsf_full_fields/parse' source_path = '/data1/v-gazh/CRSP/dsf_full_fields/2th_split' # 目录中有3.3W个csv文件,串行的话,效率大打折扣 def parseData(): source_path_list = list(Path(source_path).glob('*.csv')) multi_process = ProcessPoolExecutor(max_workers=20) multi_results = multi_process.map(func, source_path_list) def func(p): source_p = str(p) parse_p = str(p).replace('2th_split', 'parse') df = pd.read_csv(source_p) df['date'] = pd.to_datetime(df['date'].astype(str)).dt.date df.sort_values(['date'], inplace=True) # 处理close为负的值(abs),添加status标识 df['is_close'] = df['PRC'].map(lambda x: 0 if x < 0 or pd.isna(x) else 1) df['PRC'] = df['PRC'].abs() df.rename(columns={'CFACPR': 'factor'}, inplace=True) df['adj_low'] = df['BIDLO'] * df['factor'] df['adj_high'] = df['ASKHI'] * df['factor'] df['adj_close'] = df['PRC'] * df['factor'] df['adj_open'] = df['OPENPRC'] * df['factor'] df['adj_volume'] = df['VOL'] / df['factor'] # calc change df['change'] = df['adj_close'].diff(1) / df['adj_close'].shift(1) df.drop_duplicates(inplace=True) df.to_csv(parse_p, index=False) parseData()
您可能感兴趣的文章:
加载全部内容