亲宝软件园·资讯

展开

pytorch中tensor.expand()和tensor.expand_as()函数详解

人气:0

tensor.expend()函数

>>> import torch
>>> a=torch.tensor([[2],[3],[4]])
>>> print(a.size())
torch.Size([3, 1])
>>> a.expand(3,2)
tensor([[2, 2],
    [3, 3],
    [4, 4]])
>>> a
tensor([[2],
    [3],
    [4]])

可以看出expand()函数括号里面为变形后的size大小,而且原来的tensor和tensor.expand()是不共享内存的。

tensor.expand_as()函数

>>> b=torch.tensor([[2,2],[3,3],[5,5]])
>>> print(b.size())
torch.Size([3, 2])
>>> a.expand_as(b)
tensor([[2, 2],
    [3, 3],
    [4, 4]])
>>> a
tensor([[2],
    [3],
    [4]])

可以看出,b和a.expand_as(b)的size是一样大的。且是不共享内存的。

以上这篇pytorch中tensor.expand()和tensor.expand_as()函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能感兴趣的文章:

加载全部内容

相关教程
猜你喜欢
用户评论