亲宝软件园·资讯

展开

python Tensor和Array对比分析

人气:0

如下所示:

区别 Array Tensor
类型 uint8,float32系列 {}
各类型相互转换 uint8转float64:image = image * (2. / 255.) - 1 float64转uint8:image.astype(np.uint8) {}
扩充维度 image[np.newaxis, :] tf.expand_dims(image,axis=0)
数组拼接 np.concatenate([image, image], axis=0) tf.concat([frame,frame],axis=0)
相互转换 image.eval() tf.convert_to_tensor(image)
拼接 np.concat, np.concatenate, np.stack, image.append等 tf.stack, tf.concat

##array的一些操作

1、获取shape:score.shape #(1, 257, 257)

2、转换成list:score.get_shape().as_list() #[1, 257, 257]

3、list前再扩充一维: [1] + score.get_shape().as_list() #[1, 1, 257, 257]

4、x_crops是(1, 3, 255, 255, 3),将前两维合并:

x_crops = tf.reshape(x_crops, [x_crops_shape[0] * x_crops_shape[1]] + x_crops_shape[2: ])

5、numpy数组堆叠

z.shape本来是(1,127,127,3),想要堆叠成(3,127,127,3)

np.stack([z_crops_hog,z_crops_hog,z_crops_hog])后,变成了(3, 1, 127, 127, 3),

vstack 按行堆叠

hstack 按列堆叠

以上这篇python Tensor和Array对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能感兴趣的文章:

加载全部内容

相关教程
猜你喜欢
用户评论