pytorch forward两个参数实例
人气:0以channel Attention Block为例子
class CAB(nn.Module): def __init__(self, in_channels, out_channels): super(CAB, self).__init__() self.global_pooling = nn.AdaptiveAvgPool2d(output_size=1) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0) self.sigmod = nn.Sigmoid() def forward(self, x): x1, x2 = x # high, low x = torch.cat([x1,x2],dim=1) x = self.global_pooling(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.sigmod(x) x2 = x * x2 res = x2 + x1 return res
以上这篇pytorch forward两个参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
您可能感兴趣的文章:
加载全部内容