在Tensorflow中实现梯度下降法更新参数值
人气:0我就废话不多说了,直接上代码吧!
tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10]))
为Variable的参数。
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])
也可以使用var_list参数来定义更新那些参数的值
#导入Minst数据集 import input_data mnist = input_data.read_data_sets("data",one_hot=True) #导入tensorflow库 import tensorflow as tf #输入变量,把28*28的图片变成一维数组(丢失结构信息) x = tf.placeholder("float",[None,784]) #权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出 w = tf.Variable(tf.zeros([784,10])) #偏置 b = tf.Variable(tf.zeros([10])) #核心运算,其实就是softmax(x*w+b) y = tf.nn.softmax(tf.matmul(x,w) + b) #这个是训练集的正确结果 y_ = tf.placeholder("float",[None,10]) #交叉熵,作为损失函数 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) #梯度下降算法,最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) #初始化,在run之前必须进行的 init = tf.initialize_all_variables() #创建session以便运算 sess = tf.Session() sess.run(init) #迭代1000次 for i in range(1000): #获取训练数据集的图片输入和正确表示数字 batch_xs, batch_ys = mnist.train.next_batch(100) #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys}) #tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。 #这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。 #1代表正确,0代表错误 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.cast先将数据转换成float,防止求平均不准确。 #tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。 accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #输出 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))
计算结果如下
"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.9163 Process finished with exit code 0
如果限制,只更新参数W查看效果
"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:51:08.543600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:51:08.544600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.9187 Process finished with exit code 0
可以看出只修改W对结果影响不大,如果设置只修改b
#导入Minst数据集 import input_data mnist = input_data.read_data_sets("data",one_hot=True) #导入tensorflow库 import tensorflow as tf #输入变量,把28*28的图片变成一维数组(丢失结构信息) x = tf.placeholder("float",[None,784]) #权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出 w = tf.Variable(tf.zeros([784,10])) #偏置 b = tf.Variable(tf.zeros([10])) #核心运算,其实就是softmax(x*w+b) y = tf.nn.softmax(tf.matmul(x,w) + b) #这个是训练集的正确结果 y_ = tf.placeholder("float",[None,10]) #交叉熵,作为损失函数 cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) #梯度下降算法,最小化交叉熵 train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[b]) #初始化,在run之前必须进行的 init = tf.initialize_all_variables() #创建session以便运算 sess = tf.Session() sess.run(init) #迭代1000次 for i in range(1000): #获取训练数据集的图片输入和正确表示数字 batch_xs, batch_ys = mnist.train.next_batch(100) #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys}) #tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。 #这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。 #1代表正确,0代表错误 correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) #tf.cast先将数据转换成float,防止求平均不准确。 #tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。 accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) #输出 print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))
计算结果:
"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py Extracting data\train-images-idx3-ubyte.gz Extracting data\train-labels-idx1-ubyte.gz Extracting data\t10k-images-idx3-ubyte.gz Extracting data\t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02. Instructions for updating: Use `tf.global_variables_initializer` instead. 2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 0.1135 Process finished with exit code 0
如果只更新b那么对效果影响很大。
以上这篇在Tensorflow中实现梯度下降法更新参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
您可能感兴趣的文章:
加载全部内容