亲宝软件园·资讯

展开

在Tensorflow中实现梯度下降法更新参数值

人气:0

我就废话不多说了,直接上代码吧!

tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

TensorFlow经过使用梯度下降法对损失函数中的变量进行修改值,默认修改tf.Variable(tf.zeros([784,10]))

为Variable的参数。

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[w,b])

也可以使用var_list参数来定义更新那些参数的值

#导入Minst数据集
import input_data
mnist = input_data.read_data_sets("data",one_hot=True)
 
#导入tensorflow库
import tensorflow as tf
 
#输入变量,把28*28的图片变成一维数组(丢失结构信息)
x = tf.placeholder("float",[None,784])
 
#权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
w = tf.Variable(tf.zeros([784,10]))
#偏置
b = tf.Variable(tf.zeros([10]))
 
#核心运算,其实就是softmax(x*w+b)
y = tf.nn.softmax(tf.matmul(x,w) + b)
 
#这个是训练集的正确结果
y_ = tf.placeholder("float",[None,10])
 
#交叉熵,作为损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
 
#梯度下降算法,最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
 
#初始化,在run之前必须进行的
init = tf.initialize_all_variables()
#创建session以便运算
sess = tf.Session()
sess.run(init)
 
#迭代1000次
for i in range(1000):
 #获取训练数据集的图片输入和正确表示数字
 batch_xs, batch_ys = mnist.train.next_batch(100)
 #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
 
#tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
#这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
#1代表正确,0代表错误
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
 
#tf.cast先将数据转换成float,防止求平均不准确。
#tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果如下

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:49:45.866600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.9163
 
Process finished with exit code 0

如果限制,只更新参数W查看效果

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:51:08.543600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:51:08.544600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.9187
 
Process finished with exit code 0

可以看出只修改W对结果影响不大,如果设置只修改b

#导入Minst数据集
import input_data
mnist = input_data.read_data_sets("data",one_hot=True)
 
#导入tensorflow库
import tensorflow as tf
 
#输入变量,把28*28的图片变成一维数组(丢失结构信息)
x = tf.placeholder("float",[None,784])
 
#权重矩阵,把28*28=784的一维输入,变成0-9这10个数字的输出
w = tf.Variable(tf.zeros([784,10]))
#偏置
b = tf.Variable(tf.zeros([10]))
 
#核心运算,其实就是softmax(x*w+b)
y = tf.nn.softmax(tf.matmul(x,w) + b)
 
#这个是训练集的正确结果
y_ = tf.placeholder("float",[None,10])
 
#交叉熵,作为损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
 
#梯度下降算法,最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy,var_list=[b])
 
#初始化,在run之前必须进行的
init = tf.initialize_all_variables()
#创建session以便运算
sess = tf.Session()
sess.run(init)
 
#迭代1000次
for i in range(1000):
 #获取训练数据集的图片输入和正确表示数字
 batch_xs, batch_ys = mnist.train.next_batch(100)
 #运行刚才建立的梯度下降算法,x赋值为图片输入,y_赋值为正确的表示数字
 sess.run(train_step,feed_dict = {x:batch_xs, y_: batch_ys})
 
#tf.argmax获取最大值的索引。比较运算后的结果和本身结果是否相同。
#这步的结果应该是[1,1,1,1,1,1,1,1,0,1...........1,1,0,1]这种形式。
#1代表正确,0代表错误
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
 
#tf.cast先将数据转换成float,防止求平均不准确。
#tf.reduce_mean由于只有一个参数,就是上面那个数组的平均值。
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
#输出
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_: mnist.test.labels}))

计算结果:

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/softmax_learn/softmax_learn.py
Extracting data\train-images-idx3-ubyte.gz
Extracting data\train-labels-idx1-ubyte.gz
Extracting data\t10k-images-idx3-ubyte.gz
Extracting data\t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\util\tf_should_use.py:175: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-05-14 15:52:04.483600: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
0.1135
 
Process finished with exit code 0

如果只更新b那么对效果影响很大。

以上这篇在Tensorflow中实现梯度下降法更新参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

您可能感兴趣的文章:

加载全部内容

相关教程
猜你喜欢
用户评论