TensorFlow实现手写数字识别 Python(TensorFlow框架)实现手写数字识别系统的方法
louishao 人气:0手写数字识别算法的设计与实现
本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题。本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述。
项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统。
设计识别率高的算法,实现快速识别的系统。
1 LeNet-5模型的介绍
本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:
这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。
LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。
LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。
第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。
S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-pooling,LeNet-5采用的是mean-pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。
S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。
S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。
F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。
卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。
2 手写数字识别算法模型的构建
2.1 各层设计
有了第一节的基础知识,在这基础上,进行完善和改进。
输入层设计
输入为28×28的矩阵,而不是向量。
激活函数的选取
Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。
ReLU的表达式:
卷积层设计
本文设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。
降采样层
本文降采样层的pooling方式是max-pooling,大小为2×2。
输出层设计
输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:
2.2 网络模型的总体结构
其实,本文网络的构建,参考自TensorFlow的手写数字识别的官方教程的,读者有兴趣也可以详细阅读。
2.3 编程实现算法
本文使用Python,调用TensorFlow的api完成手写数字识别的算法。
注:本文程序运行环境是:Win10,python3.5.2。当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Feb 17 19:50:49 2017 @author: Yonghao Huang """ #import modules import numpy as np import matplotlib.pyplot as plt #from sklearn.metrics import confusion_matrix import tensorflow as tf import time from datetime import timedelta import math from tensorflow.examples.tutorials.mnist import input_data def new_weights(shape): return tf.Variable(tf.truncated_normal(shape,stddev=0.05)) def new_biases(length): return tf.Variable(tf.constant(0.1,shape=length)) def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_pool_2x2(inputx): return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #import data data = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2 print("Size of:") print("--Training-set:\t\t{}".format(len(data.train.labels))) print("--Testing-set:\t\t{}".format(len(data.test.labels))) print("--Validation-set:\t\t{}".format(len(data.validation.labels))) data.test.cls = np.argmax(data.test.labels,axis=1) # show the real test labels: [7 2 1 ..., 4 5 6], 10000values x = tf.placeholder("float",shape=[None,784],name='x') x_image = tf.reshape(x,[-1,28,28,1]) y_true = tf.placeholder("float",shape=[None,10],name='y_true') y_true_cls = tf.argmax(y_true,dimension=1) # Conv 1 layer_conv1 = {"weights":new_weights([5,5,1,32]), "biases":new_biases([32])} h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"]) h_pool1 = max_pool_2x2(h_conv1) # Conv 2 layer_conv2 = {"weights":new_weights([5,5,32,64]), "biases":new_biases([64])} h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"]) h_pool2 = max_pool_2x2(h_conv2) # Full-connected layer 1 fc1_layer = {"weights":new_weights([7*7*64,1024]), "biases":new_biases([1024])} h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"]) # Droupout Layer keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) # Full-connected layer 2 fc2_layer = {"weights":new_weights([1024,10]), "biases":new_weights([10])} # Predicted class y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0] y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2' # cost function to be optimized cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred)) optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy) # Performance Measures correct_prediction = tf.equal(y_pred_cls,y_true_cls) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) train_batch_size = 50 def optimize(num_iterations): total_iterations=0 start_time = time.time() for i in range(total_iterations,total_iterations+num_iterations): x_batch,y_true_batch = data.train.next_batch(train_batch_size) feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5} feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0} sess.run(optimizer,feed_dict=feed_dict_train_op) # Print status every 100 iterations. if i%100==0: # Calculate the accuracy on the training-set. acc = sess.run(accuracy,feed_dict=feed_dict_train) # Message for printing. msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}" # Print it. print(msg.format(i+1,acc)) # Update the total number of iterations performed total_iterations += num_iterations # Ending time end_time = time.time() # Difference between start and end_times. time_dif = end_time-start_time # Print the time-usage print("Time usage:"+str(timedelta(seconds=int(round(time_dif))))) test_batch_size = 256 def print_test_accuracy(): # Number of images in the test-set. num_test = len(data.test.images) cls_pred = np.zeros(shape=num_test,dtype=np.int) i = 0 while i < num_test: # The ending index for the next batch is denoted j. j = min(i+test_batch_size,num_test) # Get the images from the test-set between index i and j images = data.test.images[i:j, :] # Get the associated labels labels = data.test.labels[i:j, :] # Create a feed-dict with these images and labels. feed_dict={x:images,y_true:labels,keep_prob:1.0} # Calculate the predicted class using Tensorflow. cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch i = j cls_true = data.test.cls correct = (cls_true==cls_pred) correct_sum = correct.sum() acc = float(correct_sum) / num_test # Print the accuracy msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})" print(msg.format(acc,correct_sum,num_test)) # Performance after 10000 optimization iterations optimize(num_iterations=10000) print_test_accuracy() savew_hl1 = layer_conv1["weights"].eval() saveb_hl1 = layer_conv1["biases"].eval() savew_hl2 = layer_conv2["weights"].eval() saveb_hl2 = layer_conv2["biases"].eval() savew_fc1 = fc1_layer["weights"].eval() saveb_fc1 = fc1_layer["biases"].eval() savew_op = fc2_layer["weights"].eval() saveb_op = fc2_layer["biases"].eval() np.save("savew_hl1.npy", savew_hl1) np.save("saveb_hl1.npy", saveb_hl1) np.save("savew_hl2.npy", savew_hl2) np.save("saveb_hl2.npy", saveb_hl2) np.save("savew_hl3.npy", savew_fc1) np.save("saveb_hl3.npy", saveb_fc1) np.save("savew_op.npy", savew_op) np.save("saveb_op.npy", saveb_op)
运行结果显示:测试集中准确率大概为99.2%。
我还写了一些辅助函数,可以查看部分识别错误的图片,
还可以查看混淆矩阵,
2.3 实现手写识别系统
最后,将训练好的参数保存,封装进一个GUI界面中,形成一个手写识别系统。
系统中还添加了一点图像预处理的操作,比如灰度化,图像信息的归一化等,更贴近实际应用。
系统可进行快速识别,如下图
3 总结
本文实现的系统其实是基于卷积神经网络的手写数字识别系统。该系统能快速实现手写数字识别,成功识别率高。缺点:只能正确识别单个数字,图像预处理还不够,没有进行图像分割,读者也可以自行添加,进行完善。
4 收获
本人之前的本科期间,虽然努力学习高数、线性代数和概率论,但是没有认真学习过机器学习,本人是2017年才开始系统学习机器学习相关知识,而且本科毕业论文也选择了相关的课题,虽然比较基础,但是认真完成后,有一种学以致用的满足感,同时也激励着我进行更深入的理论学习和实践探讨,与所有读者共勉。
加载全部内容