Python3多进程 multiprocessing 模块 Python3多进程 multiprocessing 模块实例详解
Citizen_Wang 人气:0本文实例讲述了Python3多进程 multiprocessing 模块。分享给大家供大家参考,具体如下:
多进程 Multiprocessing 模块
Process 类
Process 类用来描述一个进程对象。创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建。
star() 方法启动进程,
join() 方法实现进程间的同步,等待所有进程退出。
close() 用来阻止多余的进程涌入进程池 Pool 造成进程阻塞。
multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)
target 是函数名字,需要调用的函数
args 函数需要的参数,以 tuple 的形式传入
示例:
import multiprocessing import os def run_proc(name): print('Child process {0} {1} Running '.format(name, os.getpid())) if __name__ == '__main__': print('Parent process {0} is Running'.format(os.getpid())) for i in range(5): p = multiprocessing.Process(target=run_proc, args=(str(i),)) print('process start') p.start() p.join() print('Process close')
结果:
Parent process 809 is Running
process start
process start
process start
process start
process start
Child process 0 810 Running
Child process 1 811 Running
Child process 2 812 Running
Child process 3 813 Running
Child process 4 814 Running
Process close
Pool
Pool 可以提供指定数量的进程供用户使用,默认是 CPU 核数。当有新的请求提交到 Poll 的时候,如果池子没有满,会创建一个进程来执行,否则就会让该请求等待。
- Pool 对象调用 join 方法会等待所有的子进程执行完毕
- 调用 join 方法之前,必须调用 close
- 调用 close 之后就不能继续添加新的 Process 了
pool.apply_async
apply_async
方法用来同步执行进程,允许多个进程同时进入池子。
import multiprocessing import os import time def run_task(name): print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid())) time.sleep(1) print('Task {0} end.'.format(name)) if __name__ == '__main__': print('current process {0}'.format(os.getpid())) p = multiprocessing.Pool(processes=3) for i in range(6): p.apply_async(run_task, args=(i,)) print('Waiting for all subprocesses done...') p.close() p.join() print('All processes done!')
结果:
current process 921
Waiting for all subprocesses done...
Task 0 pid 922 is running, parent id is 921
Task 1 pid 923 is running, parent id is 921
Task 2 pid 924 is running, parent id is 921
Task 0 end.
Task 3 pid 922 is running, parent id is 921
Task 1 end.
Task 4 pid 923 is running, parent id is 921
Task 2 end.
Task 5 pid 924 is running, parent id is 921
Task 3 end.
Task 4 end.
Task 5 end.
All processes done!
pool.apply
apply(func[, args[, kwds]])
该方法只能允许一个进程进入池子,在一个进程结束之后,另外一个进程才可以进入池子。
import multiprocessing import os import time def run_task(name): print('Task {0} pid {1} is running, parent id is {2}'.format(name, os.getpid(), os.getppid())) time.sleep(1) print('Task {0} end.'.format(name)) if __name__ == '__main__': print('current process {0}'.format(os.getpid())) p = multiprocessing.Pool(processes=3) for i in range(6): p.apply(run_task, args=(i,)) print('Waiting for all subprocesses done...') p.close() p.join() print('All processes done!')
结果:
Task 0 pid 928 is running, parent id is 927
Task 0 end.
Task 1 pid 929 is running, parent id is 927
Task 1 end.
Task 2 pid 930 is running, parent id is 927
Task 2 end.
Task 3 pid 928 is running, parent id is 927
Task 3 end.
Task 4 pid 929 is running, parent id is 927
Task 4 end.
Task 5 pid 930 is running, parent id is 927
Task 5 end.
Waiting for all subprocesses done...
All processes done!
Queue 进程间通信
Queue 用来在多个进程间通信。Queue 有两个方法,get 和 put。
put 方法
Put 方法用来插入数据到队列中,有两个可选参数,blocked 和 timeout。
- blocked = True(默认值),timeout 为正
该方法会阻塞 timeout 指定的时间,直到该队列有剩余空间。如果超时,抛出 Queue.Full 异常。
blocked = False
如果 Queue 已满,立刻抛出 Queue.Full 异常
get 方法
get 方法用来从队列中读取并删除一个元素。有两个参数可选,blocked 和 timeout
- blocked = False (默认),timeout 正值
等待时间内,没有取到任何元素,会抛出 Queue.Empty 异常。
blocked = True
Queue 有一个值可用,立刻返回改值;Queue 没有任何元素,
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def proc_write(q,urls): print('Process(%s) is writing...' % os.getpid()) for url in urls: q.put(url) print('Put %s to queue...' % url) time.sleep(random.random()) # 读数据进程执行的代码: def proc_read(q): print('Process(%s) is reading...' % os.getpid()) while True: url = q.get(True) print('Get %s from queue.' % url) if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() proc_writer1 = Process(target=proc_write, args=(q,['url_1', 'url_2', 'url_3'])) proc_writer2 = Process(target=proc_write, args=(q,['url_4','url_5','url_6'])) proc_reader = Process(target=proc_read, args=(q,)) # 启动子进程proc_writer,写入: proc_writer1.start() proc_writer2.start() # 启动子进程proc_reader,读取: proc_reader.start() # 等待proc_writer结束: proc_writer1.join() proc_writer2.join() # proc_reader进程里是死循环,无法等待其结束,只能强行终止: proc_reader.terminate()
结果:
Process(1083) is writing...
Put url_1 to queue...
Process(1084) is writing...
Put url_4 to queue...
Process(1085) is reading...
Get url_1 from queue.
Get url_4 from queue.
Put url_5 to queue...
Get url_5 from queue.
Put url_2 to queue...
Get url_2 from queue.
Put url_6 to queue...
Get url_6 from queue.
Put url_3 to queue...
Get url_3 from queue.
Pipe 进程间通信
常用来在两个进程间通信,两个进程分别位于管道的两端。
multiprocessing.Pipe([duplex])
示例一和示例二,也是网上找的别人的例子,尝试理解并增加了注释而已。网上的例子,大多是例子一和例子二在一起的,这里分开来看,比较容易理解。
示例一:
from multiprocessing import Process, Pipe def send(pipe): pipe.send(['spam'] + [42, 'egg']) # send 传输一个列表 pipe.close() if __name__ == '__main__': (con1, con2) = Pipe() # 创建两个 Pipe 实例 sender = Process(target=send, args=(con1, )) # 函数的参数,args 一定是实例化之后的 Pip 变量,不能直接写 args=(Pip(),) sender.start() # Process 类启动进程 print("con2 got: %s" % con2.recv()) # 管道的另一端 con2 从send收到消息 con2.close() # 关闭管道
结果:
con2 got: ['spam', 42, 'egg']
示例二:
from multiprocessing import Process, Pipe def talk(pipe): pipe.send(dict(name='Bob', spam=42)) # 传输一个字典 reply = pipe.recv() # 接收传输的数据 print('talker got:', reply) if __name__ == '__main__': (parentEnd, childEnd) = Pipe() # 创建两个 Pipe() 实例,也可以改成 conf1, conf2 child = Process(target=talk, args=(childEnd,)) # 创建一个 Process 进程,名称为 child child.start() # 启动进程 print('parent got:', parentEnd.recv()) # parentEnd 是一个 Pip() 管道,可以接收 child Process 进程传输的数据 parentEnd.send({x * 2 for x in 'spam'}) # parentEnd 是一个 Pip() 管道,可以使用 send 方法来传输数据 child.join() # 传输的数据被 talk 函数内的 pip 管道接收,并赋值给 reply print('parent exit')
结果:
parent got: {'name': 'Bob', 'spam': 42}
talker got: {'ss', 'aa', 'pp', 'mm'}
parent exit
希望本文所述对大家Python程序设计有所帮助。
加载全部内容