Python3爬虫爬取英雄联盟高清桌面壁纸 Python3爬虫爬取英雄联盟高清桌面壁纸功能示例【基于Scrapy框架】
包子源 人气:0本文实例讲述了Python3爬虫爬取英雄联盟高清桌面壁纸功能。分享给大家供大家参考,具体如下:
使用Scrapy爬虫抓取英雄联盟高清桌面壁纸
源码地址:https://github.com/snowyme/loldesk
开始项目前需要安装python3和Scrapy,不会的自行百度,这里就不具体介绍了
首先,创建项目
scrapy startproject loldesk
生成项目的目录结构
首先需要定义抓取元素,在item.py中,我们这个项目用到了图片名和链接
import scrapy class LoldeskItem(scrapy.Item): name = scrapy.Field() ImgUrl = scrapy.Field() pass
接下来在爬虫目录创建爬虫文件,并编写主要代码,loldesk.py
import scrapy from loldesk.items import LoldeskItem class loldeskpiderSpider(scrapy.Spider): name = "loldesk" allowed_domains = ["www.win4000.com"] # 抓取链接 start_urls = [ 'http://www.win4000.com/zt/lol.html' ] def parse(self, response): list = response.css(".Left_bar ul li") for img in list: imgurl = img.css("a::attr(href)").extract_first() imgurl2 = str(imgurl) next_url = response.css(".next::attr(href)").extract_first() if next_url is not None: # 下一页 yield response.follow(next_url, callback=self.parse) yield scrapy.Request(imgurl2, callback=self.content) def content(self, response): item = LoldeskItem() item['name'] = response.css(".pic-large::attr(title)").extract_first() item['ImgUrl'] = response.css(".pic-large::attr(src)").extract() yield item # 判断页码 next_url = response.css(".pic-next-img a::attr(href)").extract_first() allnum = response.css(".ptitle em::text").extract_first() thisnum = next_url[-6:-5] if int(allnum) > int(thisnum): # 下一页 yield response.follow(next_url, callback=self.content)
图片的链接和名称已经获取到了,接下来需要使用图片通道下载图片并保存到本地,pipelines.py:
from scrapy.pipelines.images import ImagesPipeline from scrapy.exceptions import DropItem from scrapy.http import Request import re class MyImagesPipeline(ImagesPipeline): def get_media_requests(self, item, info): for image_url in item['ImgUrl']: yield Request(image_url,meta={'item':item['name']}) def file_path(self, request, response=None, info=None): name = request.meta['item'] name = re.sub(r'[?\\*|“<>:/()0123456789]', '', name) image_guid = request.url.split('/')[-1] filename = u'full/{0}/{1}'.format(name, image_guid) return filename def item_completed(self, results, item, info): image_path = [x['path'] for ok, x in results if ok] if not image_path: raise DropItem('Item contains no images') item['image_paths'] = image_path return item
最后在settings.py中设置存储目录并开启通道:
# 设置图片存储路径 IMAGES_STORE = 'F:/python/loldesk' #启动pipeline中间件 ITEM_PIPELINES = { 'loldesk.pipelines.MyImagesPipeline': 300, }
在根目录下运行程序:
scrapy crawl loldesk
大功告成!!!一共抓取到128个文件夹
希望本文所述对大家Python程序设计有所帮助。
加载全部内容