亲宝软件园·资讯

展开

MongoDB Shell 命令 MongoDB Shell 命令实例总结【进阶篇】

trouble-i-am-in 人气:0

本文实例讲述了MongoDB Shell 命令。分享给大家供大家参考,具体如下:

原始文件请到我的github上去下载:https://github.com/yangqingxian/mongodb

这里先讲几件事:

1、这是第三次修改这篇文章了,也是第一次正真意义上的使用 github 来控制版本,想想还是有点小激动的:)
2、其中的内容结构与 mongodb基础命令是一致的,只不过添加了很多内容进去,适用于想进一步学习mongodb数据库的人
3、我其实也是菜鸟,所以我会用很白目的语言来解释其中的内容,如果你也跟我一样,那就两只鸟一起飞吧
4、接下来的内容均是我对《MongoDB大数据权威指南(第2版)》的摘记
5、其中的命令例子并没有事先创建好数据库、集合,都是要用到的时候临时写的,注意理解

mongodb数据库结构与传统关系型数据库的比较,便于理解接下来的内容

数据库->集合->文档
数据库->表  ->列

--------------------数据库内容------------------

查看所有数据库

show dbs

删除数据库

db.dropDatebase()

--------------------集合内容--------------------

创建集合

db.createCollection()

查看所有集合\表

show collections
show tables

选定某一集合

use db_name

查看集合的信息

db.stats()

删除一个集合,但是需要先指定一个数据库,即先执行 use db_name

db.dropDatabase()

修改集合的名称

db.collection_name.renameCollection('new_name')

----------------------文档内容---------------------

插入数据

db.collection_name.insert(document)
db.collection_name.save(document)

查询数据多条数据

db.collection_name.find()

1、可以指定返回的内容

参数解释

db.collection_name.find(
{query_term:value},
return_key_name:1}
)

a find()函数的第一个参数是查询条件,即匹配该内容的文档都会被筛选出来,如果没有查询条件,则输入{},不可以为空
b find()函数的第二个参数是指定返回的内容,例如一个student的集合中的一个xiaoming文档中包含多条内容,姓名、学生号、家庭住址等,现在我只想看姓名,不想查询的时候返回xiaoming文档的全部内容,就可以使用这种'键名:1'的形式,后面的1表示筛选出该内容并正序输出,0表示筛选出除了该内容的其余部分,-1表示逆序跟1一样的结果
c 可以返回多条记录,这里只是举个例子,还是拿ixaoming的例子

{
'name':1,
'student_id':1
}

这样就返回了两个信息,一个name,一个student_id

2、查询嵌套信息

结合二维数组理解下面的这个信息

{
'name':'yang',
'sex':'man',
'skill':[
{'php':1},
{'mongodb':4},
{'redis':5}
],
'favorite_food':'meat'
}

其中如果使用skill来作为find()的查询条件的话,千万别写成这样

---错误例子---

db.self.find({'skill':[{'php':1}]})

这样是查不到的,因为这样mongodb会将{'skill':[{'php':1}]}解析成skill数组下只包含'php':1这一条记录的内容,上面的例子明显不符合这一要求,所以查询不到

---正确的例子---

db.self.find({'skill.php':1})

这里使用了 . 告诉mongodb数据库去匹配skill数组下php为1的内容,重点在于skill下是否有'php':1这一条记录

---正确例子2---

如果一定要使用上面的错误例子的方式查询数据,可以使用$elemMatch参数,注意该参数使用的位置

db.self.find({
'skill':{$elemMatch:
{'php':1}
}
})

这里的$elemMatch是作为条件操作符来使用的

查询单条数据

db.collection_name.findOne()

 

skip 跳过查询的最开始的数量,limit,限制返回数量,sort,当 x:1 表示正序,x:-1 表示逆序

db.collection_name.find().skip(Number).limit(Number).sort({x:1})

计算符合查询条件的文档的数量

db.collection_name.find().count()

count()函数默认情况下会忽略skip()或limit()函数,例如假设student集合中有4个文档,下面的三条语句将显示不同的结果

db.student.find().limit(1).count() 结果为4,count忽略了limit(1)的条件

db.student.find().limit(1).count(true) 结果为1,为count()传入参数true

获取结果的唯一值

db.collection_name.distinct('key_name')

也是查询的函数,只不过他比起find()会将查询结果显示唯一值,而不是根据原有集合中,文档的数量来显示结果,结合关系型数据库中的distinct来理解,举个例子,有一个图书集合--books,该集合下有书名,作者,出版日期等信息,注意,一个作者可能写了很多本书,现在我想查看在该集合中有多少作者,如果我直接使用上面的find()函数来搜索的话

db.books.find(
{},
{'writer':1}
)

这样会将全部的作者列出来,但是很多都是重复的,因为find()是根据文档数量来返回结果的,而distinct()会将结果筛选,
其中重复的部分

db.books.distinct('writer')

将查询结果分组

db.collection_name.group()

data1={ 
 "_id" : ObjectId("552a330e05c27486b9b9b650"), 
 "_class" : "com.mongo.model.Orders", 
 "onumber" : "002", 
 "date" : ISODate("2014-01-03T16:03:00Z"), 
 "cname" : "zcy", 
 "item" : { 
  "quantity" : 1, 
  "price" : 4.0, 
  "pnumber" : "p002" 
 } 
}
data2={ 
 "_id" : ObjectId("552a331d05c275d8590a550d"), 
 "_class" : "com.mongo.model.Orders", 
 "onumber" : "003", 
 "date" : ISODate("2014-01-04T16:03:00Z"), 
 "cname" : "zcy", 
 "item" : { 
  "quantity" : 10, 
  "price" : 2.0, 
  "pnumber" : "p001" 
 } 
} 
data3={ 
 "_id" : ObjectId("552a333105c2f28194045a72"), 
 "_class" : "com.mongo.model.Orders", 
 "onumber" : "003", 
 "date" : ISODate("2014-01-04T16:03:00Z"), 
 "cname" : "zcy", 
 "item" : { 
  "quantity" : 30, 
  "price" : 4.0, 
  "pnumber" : "p002" 
 } 
} 
data4={ 
 "_id" : ObjectId("552a333f05c2b62c01cff50e"), 
 "_class" : "com.mongo.model.Orders", 
 "onumber" : "004", 
 "date" : ISODate("2014-01-05T16:03:00Z"), 
 "cname" : "zcy", 
 "item" : { 
  "quantity" : 5, 
  "price" : 4.0, 
  "pnumber" : "p002" 
 } 
} 
db.orders.insert(data1)
db.orders.insert(data2)
db.orders.insert(data3)
db.orders.insert(data4)

接下来展示group()函数

例1

db.orders.group({
key:{data:1,'item.pnumber':1},
initial:{'total':0},
reduce:function (doc,out){
out.total+=doc.item.quantity
}
})

首先是按照data和ietm数组中的pnumber分组
接着定义了输出变量total,记录每个产品的总数
接着是定义处理函数,也就是reduce中的函数,注意,传入参数的先后顺序,第一个参数表示当前进行分组的文档,第二个参数表示initial,所以doc能直接调用doc.item.quantity,即文档的内容,out能调用out.total,即initial的内容

例2

db.orders.group({
keyf:function(doc){
return {'month':doc.date.getMonth()+1};
},
initial:{'total':0,'money':0},
reduce:function (doc,out){
out.total+=doc.item.quantity*doc.item.price
},
finalize:function (out){
out.avg=out.money/out.total;
return out;
}
})

首先,这个例子展示了keyf的用法,他返回了一个新的字段--month,接下来mongodb会按照month的计算结果分类
接着,就是在keyf以及finalize的函数中都有传入参数,其实这个参数跟reduce中的参数名字没有关系,这里写在一起主要是为了便于理解其含义
最后就是在finalize中临时创建了一个变量avg,这个avg在最后也是会被输出的
最后一点,在函数中处理结果都是会被return的

----------------使用条件操作符来筛选查询结果------------------

一般情况下都使用在find()的第一个参数内部,作为筛选条件使用

---$gt,$lt,$get,$lte,$ne---

db.collection_name.find(
{
key_name:{$gt:value}
})

注意操作符的位置,看例子可以便于理解

db.student.find(
{
'height':{$gt:180}
})

表示筛选出学生集合中身高高于180的学生

可以同时使用两个操作符来指定范围

db.student.find({
'height':{$gt:180,$lt:220}
})

这两个的使用方法跟上面是一样的,但是需要单独拎出来讲,因为有点特殊

---$in,$nin---

db.student.find({
'height':{$in:[170,180,190,200]}
})

表示筛选出身高为170,180,190,200的学生,$nin就是筛选除了170,180,190,200之外的学生

---$all---

上面的$in中的内容是‘或'的形式,只要你的身高是170,或180,或190,或200,那么你就符合筛选条件,而$all则是且的关系

db.student.find({
'height':{$all:[170,180,190,200]}
})

这句话的意思是你的身高既是170,又是180,又是190,又是200才能满足条件

---$or---

db.student.find({
$or:[
{'score':100},
{'sex':man}
]
})

上面的例子中,score:100与sex:man是‘或'的关系,结合下面的例子就可以看出$or的作用了

db.student.find(
{'score':100,'sex':'man'}
)

其中的score:100与sex:man是且的关系

limit(x)函数加skip(y)函数=$slice:[y,x]

具体使用方法可以看下面这个例子

db.student.find(
{},
{'height':{$slice:[10,5]}}
)

还是那句老话,注意$slice的位置,这句话表示筛选身高第11到15的人,第一个参数是skip()的参数,第二个是limit()

limit()函数是限制返回文档的数量的,$size是筛选符合数量的数组的,看下面的例子就明白了

先在数据库中添加以下信息

message={
'cds':[
{'first_song':'hello'},
{'second_song':'world'},
{'third_song':'again'}
]
}
db.songs.insert(message)

接着我们来查询一下上述结果

db.songs.find(
{'cds':{$size:2}}
)

无返回结果,因为cds数组里有3组数据

db.songs.find(
{'cds':{$size:3}}
)

返回全部结果,注意一点,这里是作为find()函数的第一个参数传入的,所以是筛选条件

筛选含有特定字段的值

db.collection_name.find(
{
key_name:{$exit:true}
})

返回存在该字段的文档,注意,这里是存在该字段,而没有指定该字段的具体内容

根据数据类型筛选返回结果

db.collection_name.find(
{
'key_name':{$type:x}
})

其中的x取值内容有很多,这里就不介绍了,因为太多了看一遍也没用

在筛选中使用正则表达式

db.collection_name.find(
{
'key_name':/ /
})

在/  /中添加正则表达式的内容

更新数据

db.collection_name.update({original_key:original_value},{new_key:new_value})

1、只要原 collection 中包含 original_key:original_value 就会被选中成为操作对象

2、整个 collection 都会被更新成 new_key:new_value ,而不单单就只是更新 original_key:original_value

相较于上面会更新整个集合,下面添加了 $set: 的形式来只进行部分字段的更新

db.collection_name.update({original_key:original_value},{$set:{new_key:new_value}})

上面使用$set更新了一条字段,可以使用$unset删除一条字段

db.collection_name.update{
{},
{$unset:{key:value}}
}

如果此更新数据不存在就创建这一条数据,加第三个参数为 true 就可以实现了

db.collection_name.update({original_key:original_value},{new_key:new_value},true)

或者下面的形式也可以

db.collection_name.update({original_key:original_value},{new_key:new_value},{upsert:true})

update 只会更新第一条满足条件的记录,但是想更新多条记录时,将第三个参数设置为 false,第四个参数设置为 true,而且还要设置 $set

db.collection_name.update({original_key:original_value},{$set{new_key:new_value}},false,true)

------------------插入数据——数组部分--------------------

插入数据

db.collection_name.update(
{original_key:value},
{$push:{
new_key:new:value
}}
)

注意,如果original_key不存在,则会被创建,并且定义为数组的形式,new_key:value则是第一个值
如果original_key存在,并且数数组,则插入new_key:value,如果不是数组,则报错

一次性插入多个值,前面是使用$push一次插入一个值,如果想插入多个值的话,需要使用下面的内容

db.collection_name.update(
{original_key:value},
{$push:{
new_key:{
$each:[
'value1',
'value2',
'value3'
]
}
}
})

注意这里的$push是针对数组操作的,也就是$each后面的内容都将添加到new_key的数组中

与$push对应,$pop删除数组中的数据

db.collection_name.update(
{original_key:value},
{$pop:{
{original_key:1}
}
})

注意,这里的1表示删除的数量,可以是2,3等整数,表示从数组的后端开始删除,也可以是-1等负数,表示从数组的前端开始删除

前面的$pop可以指定删除的数量,但是不能指定删除的条件,$pull则可以

db.collection_name.update(
{original_key:value},
{$pull:
{key1:value1}
}
)

$pull会删除掉key1中所有value1的数据,注意,是删除key1中的value1数据,不是删除key1,所以只要key1数组中包含了value1就会被删除掉value1

与$pull类似,$pullAll可以删除掉多个数据

db.collection_name.update(
{original_key:value},
{$pullAll:{
key1:
[
'value1',
'value2',
'value3'
]
}
})

$addToSet是一个非常实用的向数组添加数据的命令,如果该数据不存在则添加,存在就不会重复添加了

db.collection_name.update(
{original_key:value},
{$addToSet:{
new_key:{
$each:[
'value1',
'value2',
'value3'
]
}
}
})

设想一下,如果这里不添加$each的情况,如果不添加$each,则会变成往数组new_key中直接添加新的数组

['value1','value2','value3']

可以尝试一下,理解$each的功能,回到$addToSet上来,如果原数组中就存在value1,value2,value3则不会添加,如果不存在,则将没有的添加进去,有的也不会重复添加,彼此之间不是互相影响的。

原子操作

这里就不解释什么叫原子操作了,对于我们使用者来说只要知道怎么采用原子操作就可以了

db.collection_name.findAndModify(
{
query:{key:value},
sort:{key2:1/-1},
update/remove:true,
new:true
}
)

query 指定查询的文档
sort  排序,1,-1的含义这里就不解释了,跟上面一样
update/remove 表示操作
new  表示返回最终的修改结果,可以不填

删除所有查找到的数据

db.coolection_name.remove({key:value})

删除一张表

db.collection_name.drop()

查看集合的索引

db.collection_name.getIndexes()

创建索引

db.collection_name.ensureIndex({key:value})

前面是根据key:value的形式创建索引的,接下来就为一集合的某一字段全部创建索引

db.collection_name.ensureIndex({key:1})

复合索引的创建就是在其中多添加几个内容

删除索引

db.collection_name.dropIndex({key:value})

删除所有索引

db.collection_name.dropIndexes()

前面我们操作的都是一个集合,接下来我们要学习简单的操作多个集合了,有两种方式,手动或者使用DBRef
先创建两个集合

collection1={
'name':'yang',
'sex':'man'
}
collection2={
'id':1,
'name':'yang',
'math':60,
'pe':30,
'chinese':60
}
db.student.save(collection2)
db.yang.save(collection)

接下来就是大致思路了

yang=db.yang.findOne()
db.student.find(
{'name':yang.name}
)

mongodb不支持像传统的关系型数据库那样的多表操作,mongodb都是需要先将数据保存好,再来调用的,如上面的yang保存的就是find()查询所需要的内容,需要先将数据从数据库中读出保存好再来调用,其中yang.name就等于'yang'

接下来就是使用DBRef引用数据库了,调用DBRef需要传入三个参数,第一个调用的collection_name,id,db_name,这个可选,还是上面的这个例子,接下来使用DBRef的方式,这玩意我搞不定

希望本文所述对大家MongoDB数据库程序设计有所帮助。

加载全部内容

相关教程
猜你喜欢
用户评论