亲宝软件园·资讯

展开

echarts箱线图的分析与绘制 echarts学习笔记之箱线图的分析与绘制详解

谦一 人气:2
想了解echarts学习笔记之箱线图的分析与绘制详解的相关内容吗,谦一在本文为您仔细讲解echarts箱线图的分析与绘制的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:echarts,箱线图,echarts,箱线图,颜色,echarts动态获取数据,下面大家一起来学习吧。

一、箱线图 Box-plot

箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。

什么是四分位数

箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。

计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):

对于数字个数为奇数的,其四分位数比较容易确定。例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:

而对于数字个数为偶数的,其四分位数确定起来稍微繁琐一点。例如,数字“8、17、38、39、42、44”共有6项,位置计算结果如下:

这时的数字以数据连续为前提,由所确定位置的前后两个数字共同确定。例如,Q2的位置为3.5,则由第3个数字38和第4个数字39共同确定,计算方法是:38+(39-38)×3.5的小数部分,即38+1×0.5=38.5。该结果实际上是38和39的平均数。

同理,Q1、Q3的计算结果如下:

Excel为计算四分位数提供了QUARTILE(array,quart)函数,其中array参数用于指定要计算四分位数值的数组或数值型单元格区域,quart指定返回哪一个四分位值,可用值如下:

箱线图一般被用作显示数据分散情况。具体是计算一组数据的中位数、25%分位数、75%分位数、上边界、下边界,来将数据从大到小排列,直观展示数据整体的分布情况。

大部分正常数据在箱体中,上下边界之外的就是异常数据了。

上下边界的计算公式是:

UpperLimit=Q3+1.5IQR=75%分位数+(75%分位数-25%分位数)1.5

LowerLimit=Q1-1.5IQR=25%分位数-(75%分位数-25%分位数)1.5

参数说明:

      1.Q1表示下四分位数,即25%分位数;Q3为上四分位数,即75%分位数;IQR表示上下四分位差,系数1.5是一种经过大量分析和经验积累起来的标准,一般情况下不做调整。

      2.分位数的参数可根据具体预警结果调整:25%和75%,是比较灵敏的条件,在这种条件下,多达25%的数据可以变得任意远而不会很大地扰动四分位。具体业务中可结合拟合结果自行调整为其他分位

使用echarts时,这些计算通过调用echarts.dataTool.prepareBoxplotData()来完成。

说到这里,有一个预警,绘制箱线图除了要下载echart.js之外,还需要引入dataTool.js,否则浏览器会报错:Uncaught TypeError: Cannot read property 'prepareBoxplotData' of undefined(…)

dataTool.js可以到github上下载。

二、echarts箱线图示例

echart官网给出的箱线图示例有两种。

一种是单值对应(样本元素有一组对应的值数据):

另一种是多值对应(样本元素有多个对应的值数据):

三、数据结构分析

1.单值对应

单值对应的数据结构比较简单,一个样本信息的数据存储到对应的一个数组里,这些数组又存储在一个大数组里。然后用echarts.dataTool.prepareBoxplotData()处理这个大数组。

2.多值对应

举一个栗子:线上地址在这里

两种性别的三种基因含量表。(数据纯虚构)

那要提供什么样的数据才能使用echart生成对应的箱线图?

再来看一下echart官网给出栗子数据,是通过三个for循环随机生成的。

data = [];
for (var seriesIndex = 0; seriesIndex < 5; seriesIndex++) {
 var seriesData = [];
 for (var i = 0; i < 18; i++) {
 var cate = [];
 for (var j = 0; j < 100; j++) {
  cate.push(Math.random() * 200);
 }
 seriesData.push(cate);
 }
 data.push(echarts.dataTool.prepareBoxplotData(seriesData));
}

通过在控制台console.log(data) , console.log(seriesData) , console.log(cate) ,

可以看出外层的循环是echarts.dataTool.prepareBoxplotData()执行的次数=5,可以理解为每个样本有5类元素。内部的循环表示有18个样本,一类元素的样本数据有100条。

所以要实现的性别基因表的数据结构应该是:

弄清楚数据结构剩下的绘图操作就是按部就班了,完整代码我已提交到github

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

加载全部内容

相关教程
猜你喜欢
用户评论