亲宝软件园·资讯

展开

Java构建自定义同步工具 Java并发编程中构建自定义同步工具

人气:0
想了解Java并发编程中构建自定义同步工具的相关内容吗,在本文为您仔细讲解Java构建自定义同步工具的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Java,并发编程,构建自定义同步工具,下面大家一起来学习吧。

当Java类库没有提供适合的同步工具时,就需要构建自定义同步工具。

可阻塞状态依赖操作的结构

复制代码 代码如下:

acquir lock on object state;//请求获取锁
while(precondition does not hold){//没有满足前提条件
   release lock;//先释放锁
   wait until precondition might hold;//等待满足前提条件
   optionlly fail if interrupted or timeout expires;//因为中断或者超时执行失败
   reacquire lock;//重新尝试获取锁
}
perform action//执行
   release lock;//释放锁

有界缓存实现基类示例

复制代码 代码如下:

public class BaseBoundBuffer<V> {
private final V[] buf;
private int tail;
private int head;
private int count;
@SuppressWarnings("unchecked")
public BaseBoundBuffer(int capacity) {
buf = (V[]) new Object[capacity];
}
public synchronized void doPut(V v) {
buf[tail] = v;
if (++tail == buf.length)
tail = 0;
count++;
}
public synchronized V doTake() {
V v = buf[head];

if (++head == buf.length)
head = 0;
count--;
return v;
}
public final synchronized boolean isFull() {
return count == buf.length;
}
public final synchronized boolean isEmpty() {
return count == 0;
}
}

阻塞实现方式一:抛异常给调用者

复制代码 代码如下:

public synchronized void put1(V v)  throws Exception{
if(isFull())
throw new Exception("full error");
doPut(v);
}

分析:异常应该应用于发生异常情况中,在这里抛异常不合适;需要调用者是处理前提条件失败的情况,并没有解决根本问题。
阻塞实现方式二:通过轮询和休眠
复制代码 代码如下:

public void put2(V v) throws InterruptedException {
while (true) {//轮询
synchronized (this) {
if (!isFull()) {
doPut(v);
return;    
}
}
Thread.sleep(SLEEP_TIME);//休眠
}
}

分析:很难权衡休眠时间SLEEP_TIME设置。如果设置过小,CPU可能会轮询多次,消耗CPU资源也越高;如果设置过大,响应性就越低。

阻塞实现方式三:条件队列

条件队列中的元素是一个个等待相关条件的线程。每个Java对象都可以作为一个锁,每个对象同样可以作为一个条件队列,并且Object中的wait、notify、notifyAll方法就构成了内部条件队列的API。Object.wait会自动释放锁,并请求操作系统挂起当前线程,从而使其它线程能获得这个锁并修改对象的状态。Object.notify和Object.notifyAll能唤醒正在等待线程,从条件队列中选取一个线程唤醒并尝试重新获取锁。

复制代码 代码如下:

public synchronized void put3(V v) throws InterruptedException {
while(isFull())
wait();
doput(v);
notifyAll();
}

分析:获得较好响应,简单易用。

使用条件队列​
1.条件谓词

1).定义:条件谓词是使某个操作成为状态依赖操作的前提条件。条件谓词是由类中各个状态变量构成的表达式。例如,对于put方法的条件谓词就是“缓存不为空”。
2).关系:在条件等待中存在一种重要的三元关系,包括加锁、wait方法和一个条件谓词。在条件谓词中包含多个状态变量,而每个状态变量必须由一个锁来保护,因此在测试条件谓词之前必须先持有这个锁。锁对象和条件队列对象(及调用wait和notify等方法所在的对象)必须是同一个对象。
3).约束:每次调用wait都会隐式地和特定的条件谓词相关联,当调用特定条件谓词时,调用者必须已经持有与条件队列相关的锁,这个锁必须还保护这组成条件谓词的状态变量

2.条件队列使用规则

1).通常都有一个条件谓词
2).永远在调用wait之前测试条件谓词,并且在wait中返回后再次测试;
3).永远在循环中调用wait;
4).确保构成条件谓词的状态变量被锁保护,而这个锁必须与这个条件队列相关联;
5).当调用wait、notify和notifyAll时,要持有与条件队列相关联的锁;
6).在检查条件谓词之后,开始执行被保护的逻辑之前,不要释放锁;

3.通知

尽量使用notifyAll,而不是nofify.因为nofify会随机唤醒一个线程从休眠状态变为Blocked状态(Blocked状态是种线程一直处于尝试获取锁的状态,即一旦发现锁可用,马上持有锁),而notifyAll会唤醒条件队列中所有的线程从休眠状态变为Blocked状态.考虑这么种情况,假如线程A因为条件谓词Pa进入休眠状态,线程B因为条件谓词Pb进入休眠状态.这时Pb为真,线程C执行单一的notify.如果JVM随机选择了线程A进行唤醒,那么线程A检查条件谓词Pa不为真后又进入了休眠状态.从这以后再也没有其它线程能被唤醒,程序会一直处于休眠状态.如果使用notifyAll就不一样了,JVM会唤醒条件队列中所有等待线程从休眠状态变为Blocked状态,即使随机选出一个线程一因为条件谓词不为真进入休眠状态,其它线程也会去竞争锁从而继续执行下去.

4.状态依赖方法的标准形式

复制代码 代码如下:

void stateDependentMethod throwsInterruptedException{
synchronized(lock){
while(!conditionPredicate))
lock.wait();
}
//dosomething();
....

notifyAll();
}

显示Condition对象

显示的Condition对象是一种更灵活的选择,提供了更丰富的功能:在每个锁上可以存在多个等待,条件等待可以是中断的获不可中断的,基于时限的等待,以及公平的或非公平的队列操作。一个Condition可以和一个Lock关联起来,就像一个条件队列和一个内置锁关联起来一样。要创建一个Condition,可以在相关联的Lock上调用Lock.newCondition方法。以下用显示条件变量重新实现有界缓存

复制代码 代码如下:

public class ConditionBoundedBuffer<V> {
 private final V[] buf;
 private int tail;
 private int head;
 private int count;
 private Lock lock = new ReentrantLock();
 private Condition notFullCondition = lock.newCondition();
 private Condition notEmptyCondition = lock.newCondition();
 @SuppressWarnings("unchecked")
 public ConditionBoundedBuffer(int capacity) {
  buf = (V[]) new Object[capacity];
 }

 public void doPut(V v) throws InterruptedException {
  try {
   lock.lock();
   while (count == buf.length)
    notFullCondition.await();
   buf[tail] = v;
   if (++tail == buf.length)
    tail = 0;
   count++;
   notEmptyCondition.signal();
  } finally {
   lock.unlock();
  }

 }

 public V doTake() throws InterruptedException {
  try {
   lock.lock();
   while (count == 0)
    notEmptyCondition.await();
   V v = buf[head];
   buf[head] = null;
   if (++head == buf.length)
    head = 0;
   count--;
   notFullCondition.signal();
   return v;
  } finally {
   lock.unlock();
  }
 }
}

加载全部内容

相关教程
猜你喜欢
用户评论