R|Shiny练习
叮叮当当sunny 人气:0参考:https:/https://img.qb5200.com/download-x/docs.rstudio.com/shinyapps.io/
1. 日期计算
仿照:http://bjtime.cn/riqi/
链接:https:/https://img.qb5200.com/download-x/dingdangsunny.shinyapps.io/DateCalculate/
练习Shiny基本输入输出。
library(shiny) ui <- fluidPage( titlePanel("使用Shiny进行日期计算"), h4(textOutput("currentTime")), helpText("请输入起止日期,计算日期间隔。"), helpText("默认计算当前日期与今年1月1日的间隔。"), dateRangeInput(inputId = "daterange", label = "日期范围:", start = as.Date(paste(format(Sys.time()+8*60*60, "%Y"), "/01/01",sep = ""), "%Y/%m/%d"), end = as.Date(format(Sys.time()+8*60*60, "%Y/%m/%d"), "%Y/%m/%d")), textOutput("datedif"), tags$hr(), helpText("请输入起始日期和日期间隔,推算目标日期。"), helpText("(输入负数则为向前推算。)"), dateInput(inputId = "date", label = "起始日期:"), numericInput(inputId = "days", label = "日期间隔:", value = 100), textOutput("dateaft") ) server <- function(input, output, session) { output$currentTime <- renderText({ invalidateLater(1000, session) paste("当前时间是", Sys.time()+8*60*60) }) output$datedif <- renderText({ paste("相距", diff(input$daterange), "天") }) output$dateaft <- renderText({ d <- input$date + input$days paste("推算得日期为", d, format.Date(d,"%A")) }) } shinyApp(ui = ui, server = server)
这里时间加8小时调整一下时区。
界面:
APP链接:https:/https://img.qb5200.com/download-x/dingdangsunny.shinyapps.io/DateCalculate/
2. FFT
关于FFT(快速傅里叶变换):https://www.cnblogs.comhttps://img.qb5200.com/download-x/dingdangsunny/p/12573744.html
链接:https:/https://img.qb5200.com/download-x/dingdangsunny.shinyapps.io/FastFourierTransform/
2.1 源代码
global.R
library(dplyr) FFT<-function(data, Fs, isDetrend=TRUE) { # 快速傅里叶变换 # data:波形数据 # Fs:采样率 # isDetrend:逻辑值,是否进行去均值处理,默认为true # 返回[Fre:频率,Amp:幅值,Ph:相位(弧度)] n=length(data) if(n%%2==1) { n=n-1 data=data[1:n] } if(n<4) { result<-data.frame(Fre=0,Amp=0,Ph=0) return(result) } if(isDetrend) { data<-scale(data,center=T,scale=F) } library(stats) Y = fft(data) #频率 Fre=(0:(n-1))*Fs/n Fre=Fre[1:(n/2)] #幅值 Amp=Mod(Y[1:(n/2)]) Amp[c(1,n/2)]=Amp[c(1,n/2)]/n Amp[2:(n/2-1)]=Amp[2:(n/2-1)]/(n/2) #相位 Ph=Arg(Y[1:(n/2)]) result<-data.frame(Fre=Fre,Amp=Amp,Ph=Ph) return(result) } SUB<-function(t,REG) { # 通过正则表达式提取输入数据 m<-gregexpr(REG, t) start<-m[[1]] stop<-start+attr(m[[1]],"match.length")-1 l<-length(start) r<-rep("1",l) for(i in 1:l) { r[i]<-substr(t,start[i],stop[i]) } return(r) } #生成示例信号 deg2rad<-function(a) { return(a*pi/180) } N = 256 Fs = 150 t = (0:(N-1))/Fs wave = (5 + 8*cos(2*pi*10.*t) + 4*cos(2*pi*20.*t + deg2rad(30)) + 2*cos(2*pi*30.*t + deg2rad(60)) + 1*cos(2*pi*40.*t + deg2rad(90)) + rnorm(length(t))) %>% paste(collapse = ",")
ui.R
library(shiny) shinyUI(fluidPage( titlePanel("使用Shiny进行FFT分析"), sidebarLayout( sidebarPanel( selectInput(inputId = "input_mode", label = "选择一种数据输入方式", choices = c("文本输入", "上传文件")), textAreaInput(inputId = "data", label = "原始数据:", value = wave, rows = 10), fileInput("file", "选择CSV文件进行上传", multiple = FALSE, accept = c("text/csv", "text/comma-separated-values,text/plain", ".csv")), checkboxInput("header", "是否有表头", TRUE), radioButtons("sep", "分隔符", choices = c("逗号" = ",", "分号" = ";", "制表符" = "\t"), selected = ","), numericInput(inputId = "Fs", label = "采样频率:", value = 150), sliderInput("xlim", "x坐标范围:", min = 0, max = 1, value = c(0,1)), sliderInput("ylim", "y坐标范围:", min = 0, max = 1, value = c(0,1)), checkboxInput("isDetrend", "数据中心化", TRUE), checkboxInput("showgrid", "添加网格线", TRUE) ), mainPanel( tabsetPanel( type = "tabs", tabPanel("图像", plotOutput(outputId = "data_in"), plotOutput(outputId = "result")), tabPanel("频谱", helpText("频谱分析结果如下。"), helpText("输入基频获取THD计算结果。"), numericInput(inputId = "fund", label = "基频:", value = 10), verbatimTextOutput("THD"), numericInput(inputId = "num", label = "展示几行数据:", value = 15), downloadButton("downloadData", "下载数据"), tableOutput("resultview") ), tabPanel("帮助", helpText("这是一个基于Shiny创建的网页程序, 可以进行快速傅里叶变换(FFT)。", "了解Shiny请访问:", a(em("https://shiny.rstudio.com/"), href="https://shiny.rstudio.com/")), helpText("您可以选择在文本框中输入原始数据或通过CSV文件进行上传, 文本框中的数据应由逗号或空格分隔开,CSV中的数据应处于表格 的第一列。图像面板中向您展示了原始数据的序列和FFT变换后的结果, 通过x和y坐标范围的滑块,可以将分析结果的图形进行放大。 如果勾选了数据中心化的复选框,则将滤除直流成分,否则将保留。 在频谱面板中,可以查看FFT分析的数值结果并进行下载,通过输入基频, 可以获得总谐波失真(THD)计算结果。"), helpText("源代码和演示示例请访问:", a(em("叮叮当当sunny的博客"), href="https://www.cnblogs.comhttps://img.qb5200.com/download-x/dingdangsunny/p/12586274.html#_label1"), "") ) ) ) ) ))
server.R
library(shiny) library(dplyr) shinyServer(function(input, output) { data <- reactive({ if(input$input_mode=="文本输入") { return(SUB(input$data,"[-0-9.]+") %>% as.numeric()) } else if(input$input_mode=="上传文件") { req(input$file) data <- read.csv(input$file$datapath, header = input$header, sep = input$sep) return(data[,1]) } }) result <- reactive({ FFT(data(), input$Fs, input$isDetrend) }) output$data_in <- renderPlot({ ylabel <- function() { if(input$input_mode=="上传文件" & input$header==TRUE) return((read.csv(input$file$datapath, header = TRUE, sep = input$sep) %>% names())[1]) else return("value") } par(mai=c(1,1,0.5,0.5)) plot((1:length(data()))/input$Fs, data(), type = "l", main = "The original data", xlab = "time/s", ylab = ylabel()) if(input$showgrid) { grid(col = "darkblue", lwd = 0.5) } }) output$result <- renderPlot({ Fre_max <- max(result()$Fre) Amp_max <- max(result()$Amp) x_ran <- (input$xlim*1.1-0.05)*Fre_max y_ran <- (input$ylim*1.1-0.05)*Amp_max par(mai=c(1,1,0.5,0.5)) plot(result()$Fre, result()$Amp, type = "l", xlab = "Frequency/Hz", ylab = "Amplitude", main = "FFT analysis results", xlim = x_ran, ylim = y_ran) if(input$showgrid) { grid(col = "darkblue", lwd = 0.5) } }) output$resultview <- renderTable({ r <- cbind(result()[1:input$num,], result()[(1+input$num):(2*input$num),]) names(r) <- rep(c("频率", "幅值", "相位"), 2) r }) output$THD <- renderPrint({ n <- floor(dim(result())[1]/input$fund) A <- rep(0, n) for(i in 1:n) { A[i] <- result()$Amp[which(abs(result()$Fre-i*input$fund)== min(abs(result()$Fre-i*input$fund)))] } THD <- sqrt(sum((A[2:n])^2)/(A[1])^2) cat("总谐波失真THD = ",THD*100,"%",sep = "") }) output$downloadData <- downloadHandler( filename = function() { return("FFTresult.csv") }, content = function(file) { write.csv(result(), file) } ) })
2.2 测试
由默认数据集测试得到界面如下:
频率数据界面:
帮助文本界面:
用https://www.cnblogs.comhttps://img.qb5200.com/download-x/dingdangsunny/p/12573744.html#_label2中提到的数据进行文件上传测试。
APP链接:https:/https://img.qb5200.com/download-x/dingdangsunny.shinyapps.io/FastFourierTransform/
另外,发现了一个用Shiny写的有趣的小工具,http://qplot.cn/toolbox/,可以一试……
加载全部内容