亲宝软件园·资讯

展开

二叉树基本操作 c语言版本二叉树基本操作示例(先序 递归 非递归)

人气:0
想了解c语言版本二叉树基本操作示例(先序 递归 非递归)的相关内容吗,在本文为您仔细讲解二叉树基本操作的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:二叉树,基本操作,c语言版本,先序,递归,非递归,下面大家一起来学习吧。

复制代码 代码如下:

请按先序遍历输入二叉树元素(每个结点一个字符,空结点为'='):
ABD==E==CF==G==

先序递归遍历:
A B D E C F G
中序递归遍历:
D B E A F C G
后序递归遍历:
D E B F G C A
层序递归遍历:
ABCDEFG
先序非递归遍历:
A B D E C F G
中序非递归遍历:
D B E A F C G
后序非递归遍历:
D E B F G C A
深度:
请按任意键继续. . .

复制代码 代码如下:

#include<stdio.h>
#include<stdlib.h>

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OVERFLOW -1

#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10

typedef int Status;

typedef char ElemType;
typedef struct BTNode
{
    ElemType data;
    struct BTNode *leftChild;
    struct BTNode *rightChild;
}BTNode, *BinTree;

typedef BinTree SElemType;

typedef struct{//栈结构定义
    SElemType *base;
    SElemType *top;
    int stacksize;
}SqStack;

BinTree CreateBinTree(BinTree T);
Status Visit(ElemType e);
Status Depth(BinTree T);
Status PreOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status InOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status PostOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status LevelOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));

//定义栈的相关操作
Status InitStack(SqStack *S);
Status DestroyStack(SqStack *S);
Status ClearStack(SqStack *S);
Status StackEmpty(SqStack S);
int StackLength(SqStack S);
Status GetTop(SqStack S,SElemType *e);
Status Push(SqStack *S,SElemType e);
Status Pop(SqStack *S,SElemType *e);
Status StackTraverse(const SqStack *S);

Status PreOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status InOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));
Status PostOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e));

int main()
{
    int depth;
    BinTree Tree = NULL;
    Status(*visit)(ElemType e) = Visit; 
    printf_s("请按先序遍历输入二叉树元素(每个结点一个字符,空结点为'='):\n"); 
    Tree = CreateBinTree(Tree);

    printf_s("\n先序递归遍历:\n");
    PreOrderRecursionTraverse(Tree,visit);
    printf_s("\n中序递归遍历:\n");
    InOrderRecursionTraverse(Tree,visit);
    printf_s("\n后序递归遍历:\n");
    PostOrderRecursionTraverse(Tree,visit);
    printf_s("\n层序递归遍历:\n");
    LevelOrderRecursionTraverse(Tree,visit);

    printf_s("\n先序非递归遍历:\n");
    PreOrderNoneRecursionTraverse(Tree,visit);
    printf_s("\n中序非递归遍历:\n");
    InOrderNoneRecursionTraverse(Tree,visit);
    printf_s("\n后序非递归遍历:\n");
    PostOrderNoneRecursionTraverse(Tree,visit);

    printf_s("\n深度:\n");
    depth = Depth(Tree);
    printf_s("%d\n", depth);
    system("pause");
    return 0;
}

//创建二叉树
BinTree CreateBinTree(BinTree T)
{
    char ch;
    scanf_s("%c", &ch);
    if (ch == '=')
    {
        T = NULL;
    }
    else
    {
        if (!(T=(BTNode *) malloc(sizeof(BTNode))))
        {
            exit(OVERFLOW);
        }
        T->data = ch;    //生成根结点
        T->leftChild = CreateBinTree(T->leftChild);
        T->rightChild = CreateBinTree(T->rightChild);
    }
    return T;
}

//访问二叉树
Status Visit(ElemType e)
{
    if (e == '\0')
    {
        return ERROR;
    }
    else
    {
        printf_s("%c ", e);
    }
    return OK;
}

//先序遍历递归算法
Status PreOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        if (!Visit(T->data))
        {
            return ERROR;
        }
        PreOrderRecursionTraverse(T->leftChild, Visit);
        PreOrderRecursionTraverse(T->rightChild, Visit);
    }
    return OK;
}

//中序遍历递归算法
Status InOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        InOrderRecursionTraverse(T->leftChild, Visit);
        if (!Visit(T->data))
        {
            return ERROR;
        }
        InOrderRecursionTraverse(T->rightChild, Visit);
    }
    return OK;
}

//后序遍历递归算法
Status PostOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        PostOrderRecursionTraverse(T->leftChild, Visit);
        PostOrderRecursionTraverse(T->rightChild, Visit);
        if (!Visit(T->data))
        {
            return ERROR;
        }
    }
    return OK;
}

//层序遍历递归算法
Status LevelOrderRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    if (T)
    {
        BTNode *Q[100];//假设不溢出
        int front = -1,rear = -1;
        if (T)
        {
            Q[++rear] = T;
            printf_s("%c", T->data);
            while (front != rear)
            {
                BTNode *p;
                if (!(p = (BTNode *)malloc(sizeof(BTNode))))
                {
                    exit(OVERFLOW);
                }
                p = Q[++front];
                if (p->leftChild)
                {
                    Q[++rear] = p->leftChild;
                    printf("%c",p->leftChild->data);
                }
                if (p->rightChild)
                {
                    Q[++rear] = p->rightChild;
                    printf("%c",p->rightChild->data);
                }
            }
        }
    }
    return OK;
}

Status Depth(BinTree T)
{
    int a,b;
    if (!T)
    {
        return ERROR;
    }
    else
    {
        a = Depth(T->leftChild) + 1;
        b = Depth(T->rightChild) + 1;
        return a > b ? a : b;
    }
}

//先序遍历非递归算法
Status PreOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    SqStack S;
    SElemType p;

    InitStack(&S);
    Push(&S, T);

    while (!StackEmpty(S))
    {
        Pop(&S, &p);
        if (!Visit(p->data))
        {
            return ERROR;
        }
        if (p->leftChild)
        {
            Push(&S, p->rightChild);
        }
        if (p->rightChild)
        {
            Push(&S, p->leftChild);
        }
    }
    DestroyStack(&S);
    return OK;
}

//中序遍历非递归算法
Status InOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    SqStack S;
    SElemType p;

    InitStack(&S);
    Push(&S, T);
    while (!StackEmpty(S))
    {
        while (GetTop(S,&p) && p)
        {
            Push(&S, p->leftChild);
        }
        Pop(&S, &p);
        if (!StackEmpty(S))
        {
            Pop(&S, &p);
            if (!Visit(p->data))
            {
                return ERROR;
            }
            Push(&S, p->rightChild);
        }
    }
    DestroyStack(&S);
    return OK;
}

//后序便利非递归算法
Status PostOrderNoneRecursionTraverse(BinTree T, Status (*Visit)(ElemType e))
{
    SqStack S;
    SElemType p, q;
    InitStack(&S);
    Push(&S,T);
    while(!StackEmpty(S))
    {
        while(GetTop(S,&p)&&p&&(p->leftChild||p->rightChild))
        {
            Push(&S,p->rightChild);
            Push(&S,p->leftChild);
        }
        if(!StackEmpty(S)){
            Pop(&S,&p);
            if (p)
            {
                if(!Visit(p->data))
                {
                    return ERROR;
                }
            }
            else
            {
                Pop(&S,&p);
                if(!Visit(p->data))
                {
                    return ERROR;
                }
            }           
            while (GetTop(S,&q)&&q&&p==q->rightChild)
            {
                Pop(&S,&p);
                if(!Visit(p->data))
                {
                    return ERROR;
                }
                GetTop(S,&q);
            }
        }
    }
    DestroyStack(&S);
    return OK;
}

//-----------栈的相关操作--------------//
Status InitStack(SqStack *S){
    S->base = (SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType));
    if(!S->base)
    {
        exit(0);
    }
    S->top = S->base;
    S->stacksize = STACK_INIT_SIZE;
    return OK;
}

Status DestroyStack(SqStack *S){
    if(!S)
    {
        exit(0);
    }
    free(S->base);
    return OK;
}

Status ClearStack(SqStack *S){
    if(!S)
    {
        return FALSE;
    }
    S->top = S->base;
    return OK;
}

Status StackEmpty(SqStack S){
    if(S.top==S.base)
    {
        return TRUE;
    }
    else
    {
        return FALSE;
    }
}

int StackLength(SqStack S){
    return S.stacksize;
}

Status GetTop(SqStack S,SElemType *e){
    if(S.top == S.base)
    {
        return FALSE;
    }
    else
    {
        *e = *(S.top-1);
        return OK;
    }
}

Status Push(SqStack *S,SElemType e){
    if(S->top-S->base>=S->stacksize)
    {
        S->base = (SElemType *)realloc(S->base, (S->stacksize + STACKINCREMENT) * sizeof(SElemType));
        if(!S->base)
        {
            exit(0);
        }
        S->top = S->base+S->stacksize;
        S->stacksize += STACKINCREMENT;
    }
    *S->top++ = e;
    return OK;
}

Status Pop(SqStack *S,SElemType *e){
    if(S->top==S->base)
    {
        return ERROR;
    }
    *e = *(--S->top);
    return OK;
}





 

加载全部内容

相关教程
猜你喜欢
用户评论