Python Opencv身份证号区域提取 Python+Opencv身份证号码区域提取及识别实现
Meteor Lee 人气:0前端时间智能信息处理实训,我选择的课题为SFZ号码识别,对中华人民共和国公民SFZ进行识别,提取并识别其中的SFZ号码,将SFZ号码识别为字符串的形式输出。现在实训结束了将代码发布出来供大家参考,识别的方式并不复杂,并加了一些注释,如果有什么问题可共同讨论。最后重要的事情说三遍:请勿直接抄袭,请勿直接抄袭,请勿直接抄袭!尤其是我的学弟学妹们,还是要自己做的,小心直接拿我的用被老师发现了挨批^_^。
实训环境:CentOS-7.5.1804 + Python-3.6.6 + Opencv-3.4.1
做测试用的照片以及数字识别匹配使用的模板(自制)提供给大家,通过查询得到,SFZ号码使用的字体格式为OCR-B 10 BT格式,实训中用到的SFZ图片为训练测试图片,有一部分是老师当时直接给出的,还有一部分是我自己用自己SFZ做的测试和从网上找到了一张,由于部分SFZ号码不是标准字体格式,对识别造成影响,所以有部分图片我还提前ps了一下。
流程图
前期处理的部分不在描述,流程图和代码注释中都有。其实整个过程并不是很复杂,本来想过在数字识别方面用现成的一些方法,或者想要尝试用到卷积神经网络(CNN)然后做训练集来识别。后来在和老师交流的时候,老师给出建议可以尝试使用特征点匹配或者其他类方法。根据最后数字分割出来单独显示的效果,想到了一个适合于我代码情况的简单方法。
建立一个标准号码库(利用上面自制模板数字分割后获得),然后用每一个号码图片与库中所有标准号码图片做相似度匹配,和哪一个模板相似度最高,则说明该图片为哪一位号码。在将模板号码分割成功后,最关键的一步就是进行相似度匹配。为提高匹配的精确度和效率,首先利用cv.resize()将前面被提取出的每位SFZ号码以及标准号码库中的号码做图像大小调整,统一将图像均调整为12x18像素的大小,图像大小的选择是经过慎重的考虑的,如果太大则计算过程耗时,如果过小则可能存在较大误差。匹配的具体方案为:记录需要识别的图片与每个模板图片中有多少位置的像素点相同,相同的越多,说明相似度越高,也就最有可能是某个号码。最终将18位号码都识别完成后,得到的具体的相似度矩阵。
具体代码如下所示:
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 将SFZ号码区域从SFZ中提取出 def Extract(op_image, sh_image): binary, contours, hierarchy = cv.findContours(op_image, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) contours.remove(contours[0]) max_x, max_y, max_w, max_h = cv.boundingRect(contours[0]) color = (0, 0, 0) for c in contours: x, y, w, h = cv.boundingRect(c) cv.rectangle(op_image, (x, y), (x + w, y + h), color, 1) cv.rectangle(sh_image, (x, y), (x + w, y + h), color, 1) if max_w < w: max_x = x max_y = y max_w = w max_h = h cut_img = sh_image[max_y:max_y+max_h, max_x:max_x+max_w] cv.imshow("The recognized enlarged image", op_image) cv.waitKey(0) cv.imshow("The recognized binary image", sh_image) cv.waitKey(0) return cut_img # 号码内部区域填充(未继续是用此方法) def Area_filling(image, kernel): # The boundary image iterate = np.zeros(image.shape, np.uint8) iterate[:, 0] = image[:, 0] iterate[:, -1] = image[:, -1] iterate[0, :] = image[0, :] iterate[-1, :] = image[-1, :] while True: old_iterate = iterate iterate_dilation = cv.dilate(iterate, kernel, iterations=1) iterate = cv.bitwise_and(iterate_dilation, image) difference = cv.subtract(iterate, old_iterate) # if difference is all zeros it will return False if not np.any(difference): break return iterate # 将SFZ号码区域再次切割使得一张图片一位号码 def Segmentation(cut_img, kernel, n): #首先进行一次号码内空白填充(效果不佳,放弃) #area_img = Area_filling(cut_img, kernel) #cv.imshow("area_img", area_img) #cv.waitKey(0) #dilate = cv.dilate(area_img, kernel, iterations=1) #cv.imshow("dilate", dilate) #cv.waitKey(0) cut_copy = cut_img.copy() binary, contours, hierarchy = cv.findContours(cut_copy, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) contours.remove(contours[0]) for c in contours: x, y, w, h = cv.boundingRect(c) for i in range(h): for j in range(w): # 把首次用findContours()方法识别的轮廓内区域置黑色 cut_copy[y + i, x + j] = 0 # cv.rectangle(cut_copy, (x, y), (x + w, y + h), color, 1) cv.imshow("Filled image", cut_copy) cv.waitKey(0) # 尝试进行分割 binary, contours, hierarchy = cv.findContours(cut_copy, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) #tmp_img = cut_img.copy() # 如果识别的轮廓数量不是n+1位(首先是一个整个区域的轮廓,然后是n位号码各自的轮廓,SFZ和匹配模板分割均用此方法) while len(contours)!=n+1: if len(contours) < n+1: # 如果提取的轮廓数量小于n+1, 说明可能有两位数被识别到一个轮廓中,做一次闭运算,消除数位之间可能存在的连接部分,然后再次尝试提取 #cut_copy = cv.dilate(cut_copy, kernel, iterations=1) cut_copy = cv.morphologyEx(cut_copy, cv.MORPH_CLOSE, kernel) cv.imshow("cut_copy", cut_copy) cv.waitKey(0) # 再次尝试提取SFZ区域的轮廓并将轮廓内区域用黑色覆盖 binary, contours, hierarchy = cv.findContours(cut_copy, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # 去掉提取出的第一个轮廓(第一个轮廓为整张图片) contours.remove(contours[0]) for c in contours: x, y, w, h = cv.boundingRect(c) for i in range(h): for j in range(w): cut_copy[y + i, x + j] = 0 # cv.rectangle(cut_copy, (x, y), (x + w, y + h), color, 1) cv.imshow("Filled image", cut_copy) cv.waitKey(0) #如果findContours()结果为n,跳出 if len(contours) == n: break elif len(contours) > n+1: # 如果提取的轮廓数量大于n+1, 说明可能有一位数被识别到两个轮廓中,做一次开运算,增强附近SFZ区域部分之间的连接部分,然后再次尝试提取 #cut_copy = cv.erode(cut_copy, kernel, iterations=1) cut_copy = cv.morphologyEx(cut_copy, cv.MORPH_OPEN, kernel2) cv.imshow("cut_copy", cut_copy) cv.waitKey(0) #再次尝试提取SFZ区域的轮廓并将轮廓内区域用黑色覆盖 binary, contours, hierarchy = cv.findContours(cut_copy, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) #去掉提取出的第一个轮廓(第一个轮廓为整张图片) contours.remove(contours[0]) for c in contours: x, y, w, h = cv.boundingRect(c) for i in range(h): for j in range(w): cut_copy[y + i, x + j] = 0 # cv.rectangle(cut_copy, (x, y), (x + w, y + h), color, 1) #cv.imshow("cut_copy", cut_copy) #cv.waitKey(0) if len(contours) == n: break # 上述while()中循环完成后,处理的图像基本满足分割要求,进行最后的提取分割 binary, contours, hierarchy = cv.findContours(cut_copy, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) contours.remove(contours[0]) color = (0, 0, 0) for c in contours: x, y, w, h = cv.boundingRect(c) for i in range(h): for j in range(w): cv.rectangle(cut_copy, (x, y), (x + w, y + h), color, 1) cv.rectangle(cut_img, (x, y), (x + w, y + h), color, 1) cv.imshow("Filled image", cut_copy) cv.waitKey(0) cv.imshow("cut_img", cut_img) cv.waitKey(0) #print('number:', len(contours)) # Returns the result of the split return contours #return cut_img # Sort排序方法,先将图像分割,由于分割的先后顺序不是按照从左往右,根据横坐标大小将每位SFZ号码图片进行排序 def sort(contours, image): tmp_num = [] x_all = [] x_sort = [] for c in contours: x, y, w, h = cv.boundingRect(c) # 使用x坐标来确定SFZ号码图片的顺序,把个图片坐标的x值放入x_sort中 x_sort.append(x) # 建立一个用于索引x坐标的列表 x_all.append(x) tmp_img = image[y+1:y+h-1, x+1:x+w-1] tmp_img = cv.resize(tmp_img, (40, 60)) cv.imshow("Number", tmp_img) cv.waitKey(0) # 将分割的图片缩小至12乘18像素的大小,标准化同时节约模板匹配的时间 tmp_img = cv.resize(tmp_img, (12, 18)) tmp_num.append(tmp_img) # 利用x_sort排序,用x_all索引,对SFZ号码图片排序 x_sort.sort() num_img = [] for x in x_sort: index = x_all.index(x) num_img.append(tmp_num[index]) # 返回排序后图片列表 return num_img # 图像识别方法 def MatchImage(img_num, tplt_num): # IDnum用于存储最终的SFZ字符串 IDnum = '' # SFZ号码18位 for i in range(18): # 存储最大相似度模板的索引以及最大相似度 max_index = 0 max_simil = 0 # 模板有1~9,0,X共11个 for j in range(11): # 存储SFZ号码图片与模板之间的相似度 simil = 0 for y in range(18): for x in range(12): # 如果SFZ号码图片与模板之间对应位置像素点相同,simil 值自加1 if img_num[i][y,x] == tplt_num[j][y,x]: simil+=1 if max_simil < simil: max_index = j max_simil = simil print(str(simil)+' ',end='') if max_index < 9: IDnum += str(max_index+1) elif max_index == 9: IDnum += str(0) else: IDnum += 'X' print() return IDnum # 最终效果展示 def display(IDnum, image): image = cv.resize(image, (960, 90)) plt.figure(num='ID_Number') plt.subplot(111), plt.imshow(image, cmap='gray'), plt.title(IDnum, fontsize=30), plt.xticks([]), plt.yticks([]) plt.show() if __name__ == '__main__': # 一共三张做测试用SFZ图像 path = 'IDcard01.jpg' #path = 'IDcard02.png' #path = 'IDcard.jpg' id_card = cv.imread(path, 0) cv.imshow('Original image', id_card) cv.waitKey(0) # 将图像转化成标准大小 id_card = cv.resize(id_card,(1200, 820)) cv.imshow('Enlarged original image', id_card) cv.waitKey(0) # 图像二值化 ret, binary_img = cv.threshold(id_card, 127, 255, cv.THRESH_BINARY) cv.imshow('Binary image', binary_img) cv.waitKey(0) # RECTANGULAR kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3)) # RECTANGULAR kernel2 = cv.getStructuringElement(cv.MORPH_DILATE, (5, 5)) #close_img = cv.morphologyEx(binary_img, cv.MORPH_CLOSE, kernel) # The corrosion treatment connects the ID Numbers erode = cv.erode(binary_img, kernel, iterations=10) cv.imshow('Eroded image', erode) cv.waitKey(0) cut_img = Extract(erode, binary_img.copy()) cv.imshow("cut_img", cut_img) cv.waitKey(0) # 存储最终分割的轮廓 contours = Segmentation(cut_img, kernel, 18) # 对图像进行分割并排序 img_num = sort(contours, cut_img) # 识别用的模板 tplt_path = '/home/image/Pictures/template.jpg' tplt_img = cv.imread(tplt_path, 0) #cv.imshow('Template image', tplt_img) #cv.waitKey(0) ret, binary_tplt = cv.threshold(tplt_img, 127, 255, cv.THRESH_BINARY) cv.imshow('Binary template image', binary_tplt) cv.waitKey(0) # 与SFZ相同的分割方式 contours = Segmentation(binary_tplt, kernel, 11) tplt_num = sort(contours, binary_tplt) # 最终识别出的SFZ号码 IDnum = MatchImage(img_num, tplt_num) print('\nID_Number is:', IDnum) # 图片展示 display(IDnum, cut_img)
效果展示:
加载全部内容