亲宝软件园·资讯

展开

mysql千万级索引优化查询 mysql千万级数据量根据索引优化查询速度的实现

李秀才 人气:0
想了解mysql千万级数据量根据索引优化查询速度的实现的相关内容吗,李秀才在本文为您仔细讲解mysql千万级索引优化查询的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:mysql千万级索引优化查询,mysql千万级索引查询,下面大家一起来学习吧。

(一)索引的作用

索引通俗来讲就相当于书的目录,当我们根据条件查询的时候,没有索引,便需要全表扫描,数据量少还可以,一旦数据量超过百万甚至千万,一条查询sql执行往往需要几十秒甚至更多,5秒以上就已经让人难以忍受了。

能在软件上解决的,就不在硬件上解决,毕竟硬件提升代码昂贵,性价比太低。代价小且行之有效的解决方法就是合理的加索引。索引使用得当,能使查询速度提升上千倍,效果惊人。

(二)mysql的索引类型:

mysql的索引有5种:主键索引、普通索引、唯一索引、全文索引、聚合索引(多列索引)。

唯一索引和全文索引用的很少,我们主要关注主键索引、普通索引和聚合索引。

1)主键索引:主键索引是加在主键上的索引,设置主键(primary key)的时候,mysql会自动创建主键索引;

2)普通索引:创建在非主键列上的索引;

3)聚合索引:创建在多列上的索引。

(三)索引的语法:

查看某张表的索引:show index from 表名;

创建普通索引:alter table 表名 add index  索引名 (加索引的列) 

创建聚合索引:alter table 表名 add index  索引名 (加索引的列1,加索引的列2) 

删除某张表的索引:drop index 索引名 on 表名;

(四)性能测试

测试环境:博主工作用台式机

处理器为Intel Core i5-4460 3.2GHz;

内存8G;

64位windows。

1:创建一张测试表

DROP TABLE IF EXISTS `test_user`;
CREATE TABLE `test_user` (
 `id` bigint(20) PRIMARY key not null AUTO_INCREMENT,
 `username` varchar(11) DEFAULT NULL,
 `gender` varchar(2) DEFAULT NULL,
 `password` varchar(100) DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

存储引擎使用MyISAM是因为此引擎没有事务,插入速度极快,方便我们快速插入千万条测试数据,等我们插完数据,再把存储类型修改为InnoDB。

2:使用存储过程插入1千万条数据

create procedure myproc() 
begin 
declare num int; 
set num=1; 
while num <= 10000000 do 
insert into test_user(username,gender,password) values(num,'保密',PASSWORD(num)); 
set num=num+1;
end while;
 end
call myproc();

由于使用的MyISAM引擎,插入1千万条数据,仅耗时246秒,若是InnoDB引擎,就要花费数小时了。

然后将存储引擎修改回InnDB。使用如下命令:  alter table test_user engine=InnoDB;此命令执行时间大约耗时5分钟,耐心等待。

tips:这里是测试,生产环境中不要随意修改存储引擎,还有alter table 操作,会锁整张表,慎用。其次:myisam引擎没有事务,且只是将数据写到内存中,然后定期将数据刷出到磁盘上,因此突然断电的情况下,会导致数据丢失。而InnDB引擎,是将数据写入日志中,然后定期刷出到磁盘上,所以不怕突然断电等情况。因此在实际生产中能用InnDB则用。

3:sql测试

select id,username,gender,password from test_user where id=999999

耗时:0.114s。

因为我们建表的时候,将id设成了主键,所以执行此sql的时候,走了主键索引,查询速度才会如此之快。

我们再执行select id,username,gender,password from test_user where username='9000000'
耗时:4.613s。

我们给username列加上普通索引。

ALTER TABLE `test_user` ADD INDEX index_name(username) ;

此过程大约耗时 54.028s,建索引的过程会全表扫描,逐条建索引,当然慢了。

再来执行:selectid,username,gender,password from test_user where username='9000000'
耗时:0.043s。

再用username和password来联合查询

select id,username,gender,password from test_user where username='9000000' and `password`='*3A70E147E88D99888804E4D472410EFD9CD890AE'

此时虽然我们队username加了索引,但是password列未加索引,索引执行password筛选的时候,还是会全表扫描,因此此时

查询速度立马降了下来。

耗时:4.492s。

当我们的sql有多个列的筛选条件的时候,就需要对查询的多个列都加索引组成聚合索引:

加上聚合索引:ALTER TABLE `test_user` ADD INDEX index_union_name_password(username,password)
再来执行:

耗时:0.001s。

开篇也说过软件层面的优化一是合理加索引;二是优化执行慢的sql。此二者相辅相成,缺一不可,如果加了索引,还是查询很慢,这时候就要考虑是sql的问题了,优化sql。

Tips:

1:加了索引,依然全表扫描的可能情况有:

索引列为字符串,而没带引号;

索引列没出现在where条件后面;

索引列出现的位置没在前面。

2:关联查询不走索引的可能情况有:

关联的多张表的字符集不一样;

关联的字段的字符集不一样;

存储引擎不一样;

字段的长度不一样。

加载全部内容

相关教程
猜你喜欢
用户评论