java滑动验证码 使用java + selenium + OpenCV破解网易易盾滑动验证码的示例
香芋味的猫 人气:1想了解使用java + selenium + OpenCV破解网易易盾滑动验证码的示例的相关内容吗,香芋味的猫在本文为您仔细讲解java滑动验证码的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:java滑动验证码,java,selenium,,OpenCV滑动验证码,下面大家一起来学习吧。
网易易盾:dun.163.com
* 验证码地址:https://dun.163.com/trial/jigsaw * 使用OpenCv模板匹配 * Java + Selenium + OpenCV
产品样例
接下来就是见证奇迹的时刻!
注意!!!
· 在模拟滑动时不能按照相同速度或者过快的速度滑动,需要向人滑动时一样先快后慢,这样才不容易被识别。
模拟滑动代码↓↓↓
/** * 模拟人工移动 * @param driver * @param element页面滑块 * @param distance需要移动距离 */ public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException { int randomTime = 0; if (distance > 90) { randomTime = 250; } else if (distance > 80 && distance <= 90) { randomTime = 150; } List<Integer> track = getMoveTrack(distance - 2); int moveY = 1; try { Actions actions = new Actions(driver); actions.clickAndHold(element).perform(); Thread.sleep(200); for (int i = 0; i < track.size(); i++) { actions.moveByOffset(track.get(i), moveY).perform(); Thread.sleep(new Random().nextInt(300) + randomTime); } Thread.sleep(200); actions.release(element).perform(); } catch (Exception e) { e.printStackTrace(); } } /** * 根据距离获取滑动轨迹 * @param distance需要移动的距离 * @return */ public static List<Integer> getMoveTrack(int distance) { List<Integer> track = new ArrayList<>();// 移动轨迹 Random random = new Random(); int current = 0;// 已经移动的距离 int mid = (int) distance * 4 / 5;// 减速阈值 int a = 0; int move = 0;// 每次循环移动的距离 while (true) { a = random.nextInt(10); if (current <= mid) { move += a;// 不断加速 } else { move -= a; } if ((current + move) < distance) { track.add(move); } else { track.add(distance - current); break; } current += move; } return track; }
操作过程
/** * 获取网易验证滑动距离 * * @return */ public static String dllPath = "C://chrome//opencv_java440.dll"; public double getDistance(String bUrl, String sUrl) { System.load(dllPath); File bFile = new File("C:/EasyDun_b.png"); File sFile = new File("C:/EasyDun_s.png"); try { FileUtils.copyURLToFile(new URL(bUrl), bFile); FileUtils.copyURLToFile(new URL(sUrl), sFile); BufferedImage bgBI = ImageIO.read(bFile); BufferedImage sBI = ImageIO.read(sFile); // 裁剪 cropImage(bgBI, sBI, bFile, sFile); Mat s_mat = Imgcodecs.imread(sFile.getPath()); Mat b_mat = Imgcodecs.imread(bFile.getPath()); //阴影部分为黑底时需要转灰度和二值化,为白底时不需要 // 转灰度图像 Mat s_newMat = new Mat(); Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY); // 二值化图像 binaryzation(s_newMat); Imgcodecs.imwrite(sFile.getPath(), s_newMat); int result_rows = b_mat.rows() - s_mat.rows() + 1; int result_cols = b_mat.cols() - s_mat.cols() + 1; Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1); Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 归一化平方差匹配法TM_SQDIFF 相关系数匹配法TM_CCOEFF Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat()); Point matchLocation = new Point(); MinMaxLocResult mmlr = Core.minMaxLoc(g_result); matchLocation = mmlr.maxLoc; // 此处使用maxLoc还是minLoc取决于使用的匹配算法 Imgproc.rectangle(b_mat, matchLocation, new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 255, 0, 0)); Imgcodecs.imwrite(bFile.getPath(), b_mat); return matchLocation.x + s_mat.cols() - sBI.getWidth() + 12; } catch (Throwable e) { e.printStackTrace(); return 0; } finally { bFile.delete(); sFile.delete(); } } /** * 图片亮度调整 * * @param image * @param param * @throws IOException */ public void bloding(BufferedImage image, int param) throws IOException { if (image == null) { return; } else { int rgb, R, G, B; for (int i = 0; i < image.getWidth(); i++) { for (int j = 0; j < image.getHeight(); j++) { rgb = image.getRGB(i, j); R = ((rgb >> 16) & 0xff) - param; G = ((rgb >> 8) & 0xff) - param; B = (rgb & 0xff) - param; rgb = ((clamp(255) & 0xff) << 24) | ((clamp(R) & 0xff) << 16) | ((clamp(G) & 0xff) << 8) | ((clamp(B) & 0xff)); image.setRGB(i, j, rgb); } } } } // 判断a,r,g,b值,大于256返回256,小于0则返回0,0到256之间则直接返回原始值 private int clamp(int rgb) { if (rgb > 255) return 255; if (rgb < 0) return 0; return rgb; } /** * 生成半透明小图并裁剪 * * @param image * @return */ private void cropImage(BufferedImage bigImage, BufferedImage smallImage, File bigFile, File smallFile) { int y = 0; int h_ = 0; try { // 2 生成半透明图片 bloding(bigImage, 75); for (int w = 0; w < smallImage.getWidth(); w++) { for (int h = smallImage.getHeight() - 2; h >= 0; h--) { int rgb = smallImage.getRGB(w, h); int A = (rgb & 0xFF000000) >>> 24; if (A >= 100) { rgb = (127 << 24) | (rgb & 0x00ffffff); smallImage.setRGB(w, h, rgb); } } } for (int h = 1; h < smallImage.getHeight(); h++) { for (int w = 1; w < smallImage.getWidth(); w++) { int rgb = smallImage.getRGB(w, h); int A = (rgb & 0xFF000000) >>> 24; if (A > 0) { if (y == 0) y = h; h_ = h - y; break; } } } smallImage = smallImage.getSubimage(0, y, smallImage.getWidth(), h_); bigImage = bigImage.getSubimage(0, y, bigImage.getWidth(), h_); ImageIO.write(bigImage, "png", bigFile); ImageIO.write(smallImage, "png", smallFile); } catch (Throwable e) { System.out.println(e.toString()); } } /** * * @param mat * 二值化图像 */ public static void binaryzation(Mat mat) { int BLACK = 0; int WHITE = 255; int ucThre = 0, ucThre_new = 127; int nBack_count, nData_count; int nBack_sum, nData_sum; int nValue; int i, j; int width = mat.width(), height = mat.height(); // 寻找最佳的阙值 while (ucThre != ucThre_new) { nBack_sum = nData_sum = 0; nBack_count = nData_count = 0; for (j = 0; j < height; ++j) { for (i = 0; i < width; i++) { nValue = (int) mat.get(j, i)[0]; if (nValue > ucThre_new) { nBack_sum += nValue; nBack_count++; } else { nData_sum += nValue; nData_count++; } } } nBack_sum = nBack_sum / nBack_count; nData_sum = nData_sum / nData_count; ucThre = ucThre_new; ucThre_new = (nBack_sum + nData_sum) / 2; } // 二值化处理 int nBlack = 0; int nWhite = 0; for (j = 0; j < height; ++j) { for (i = 0; i < width; ++i) { nValue = (int) mat.get(j, i)[0]; if (nValue > ucThre_new) { mat.put(j, i, WHITE); nWhite++; } else { mat.put(j, i, BLACK); nBlack++; } } } // 确保白底黑字 if (nBlack > nWhite) { for (j = 0; j < height; ++j) { for (i = 0; i < width; ++i) { nValue = (int) (mat.get(j, i)[0]); if (nValue == 0) { mat.put(j, i, WHITE); } else { mat.put(j, i, BLACK); } } } } } // 延时加载 private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception { WebElement webElement = null; boolean isWait = false; for (int k = 0; k < count; k++) { try { webElement = driver.findElement(by); if (isWait) System.out.println(" ok!"); return webElement; } catch (org.openqa.selenium.NoSuchElementException ex) { isWait = true; if (k == 0) System.out.print("waitWebElement(" + by.toString() + ")"); else System.out.print("."); Thread.sleep(50); } } if (isWait) System.out.println(" outTime!"); return null; }
注意:有一个问题还没有解决,还无法区分阴影部分是黑色还是白色。 因为两种的情况不同,所以处理方式也不同。阴影部分为黑底时需要转灰度和二值化,为白底时不需要。黑底使用归一化平方差匹配算法 TM_SQDIFF ,而白底使用相关系数匹配算法 TM_CCOEFF。
加载全部内容