亲宝软件园·资讯

展开

Python爬取豆瓣Top电影 Python爬虫入门教程01之爬取豆瓣Top电影

嗨学编程 人气:0

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理

基本开发环境

相关模块的使用

安装Python并添加到环境变量,pip安装需要的相关模块即可。

爬虫基本思路

在这里插入图片描述

一、明确需求

爬取豆瓣Top250排行电影信息

在这里插入图片描述 

二、发送请求

Python中的大量开源的模块使得编码变的特别简单,我们写爬虫第一个要了解的模块就是requests。

在这里插入图片描述
在这里插入图片描述

请求url地址,使用get请求,添加headers请求头,模拟浏览器请求,网页会给你返回response对象

# 模拟浏览器发送请求
import requests
url = 'https://movie.douban.com/top250'
headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response)

在这里插入图片描述

200是状态码,表示请求成功

2xx (成功)
3xx (重定向)
4xx(请求错误)
5xx(服务器错误)

常见状态码

通常,这只是暂时状态。

 三、获取数据

import requests
url = 'https://movie.douban.com/top250'
headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response.text)

在这里插入图片描述

requests.get(url=url, headers=headers) 请求网页返回的是response对象

response.text: 获取网页文本数据

response.json: 获取网页json数据

这两个是用的最多的,当然还有其他的

apparent_encoding cookies  	history
iter_lines  ok						close   
elapsed  is_permanent_redirect 	json   
raise_for_status	 connection  	encoding  
is_redirect  links   	raw   
content  headers  	iter_content  
next   reason					url

四、解析数据

常用解析数据方法: 正则表达式、css选择器、xpath、lxml…

常用解析模块:bs4、parsel…

我们使用的是 parsel 无论是在之前的文章,还是说之后的爬虫系列文章,我都会使用 parsel 这个解析库,无它就是觉得它比bs4香。

parsel 是第三方模块,pip install parsel 安装即可

parsel 可以使用 css、xpath、re解析方法

在这里插入图片描述

所有的电影信息都包含在 li 标签当中。

# 把 response.text 文本数据转换成 selector 对象
selector = parsel.Selector(response.text)
# 获取所有li标签
lis = selector.css('.grid_view li')
# 遍历出每个li标签内容
for li in lis:
 # 获取电影标题 hd 类属性 下面的 a 标签下面的 第一个span标签里面的文本数据 get()输出形式是 字符串获取一个 getall() 输出形式是列表获取所有
 title = li.css('.hd a span:nth-child(1)::text').get() # get()输出形式是 字符串
 movie_list = li.css('.bd p:nth-child(1)::text').getall() # getall() 输出形式是列表
 star = movie_list[0].strip().replace('\xa0\xa0\xa0', '').replace('/...', '')
 movie_info = movie_list[1].strip().split('\xa0/\xa0') # ['1994', '美国', '犯罪 剧情']
 movie_time = movie_info[0] # 电影上映时间
 movie_country = movie_info[1] # 哪个国家的电影
 movie_type = movie_info[2] # 什么类型的电影
 rating_num = li.css('.rating_num::text').get() # 电影评分
 people = li.css('.star span:nth-child(4)::text').get() # 评价人数
 summary = li.css('.inq::text').get() # 一句话概述
 dit = {
 '电影名字': title,
 '参演人员': star,
 '上映时间': movie_time,
 '拍摄国家': movie_country,
 '电影类型': movie_type,
 '电影评分': rating_num,
 '评价人数': people,
 '电影概述': summary,
 }
 # pprint 格式化输出模块
 pprint.pprint(dit)

在这里插入图片描述

以上的知识点使用到了

所以扎实基础是很有必要的。不然你连代码都不知道为什么要这样写。

五、保存数据(数据持久化)

常用的保存数据方法 with open

像豆瓣电影信息这样的数据,保存到Excel表格里面会更好。

所以需要使用到 csv 模块

# csv模块保存数据到Excel
f = open('豆瓣电影数据.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['电影名字', '参演人员', '上映时间', '拍摄国家', '电影类型',
      '电影评分', '评价人数', '电影概述'])

csv_writer.writeheader() # 写入表头

在这里插入图片描述
在这里插入图片描述

这就是爬取了数据保存到本地了。这只是一页的数据,爬取数据肯定不只是爬取一页数据。想要实现多页数据爬取,就要分析网页数据的url地址变化规律。

在这里插入图片描述

可以清楚看到每页url地址是 25 递增的,使用for循环实现翻页操作

for page in range(0, 251, 25):
 url = f'https://movie.douban.com/top250?start={page}&filter='

完整实现代码

""""""
import pprint
import requests
import parsel
import csv
'''
1、明确需求:
 爬取豆瓣Top250排行电影信息
 电影名字
 导演、主演
 年份、国家、类型
 评分、评价人数
 电影简介
'''
# csv模块保存数据到Excel
f = open('豆瓣电影数据.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['电影名字', '参演人员', '上映时间', '拍摄国家', '电影类型',
      '电影评分', '评价人数', '电影概述'])

csv_writer.writeheader() # 写入表头

# 模拟浏览器发送请求
for page in range(0, 251, 25):
 url = f'https://movie.douban.com/top250?start={page}&filter='
 headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
 }
 response = requests.get(url=url, headers=headers)
 # 把 response.text 文本数据转换成 selector 对象
 selector = parsel.Selector(response.text)
 # 获取所有li标签
 lis = selector.css('.grid_view li')
 # 遍历出每个li标签内容
 for li in lis:
 # 获取电影标题 hd 类属性 下面的 a 标签下面的 第一个span标签里面的文本数据 get()输出形式是 字符串获取一个 getall() 输出形式是列表获取所有
 title = li.css('.hd a span:nth-child(1)::text').get() # get()输出形式是 字符串
 movie_list = li.css('.bd p:nth-child(1)::text').getall() # getall() 输出形式是列表
 star = movie_list[0].strip().replace('\xa0\xa0\xa0', '').replace('/...', '')
 movie_info = movie_list[1].strip().split('\xa0/\xa0') # ['1994', '美国', '犯罪 剧情']
 movie_time = movie_info[0] # 电影上映时间
 movie_country = movie_info[1] # 哪个国家的电影
 movie_type = movie_info[2] # 什么类型的电影
 rating_num = li.css('.rating_num::text').get() # 电影评分
 people = li.css('.star span:nth-child(4)::text').get() # 评价人数
 summary = li.css('.inq::text').get() # 一句话概述
 dit = {
  '电影名字': title,
  '参演人员': star,
  '上映时间': movie_time,
  '拍摄国家': movie_country,
  '电影类型': movie_type,
  '电影评分': rating_num,
  '评价人数': people,
  '电影概述': summary,
 }
 pprint.pprint(dit)
 csv_writer.writerow(dit)

实现效果

在这里插入图片描述
在这里插入图片描述

加载全部内容

相关教程
猜你喜欢
用户评论