亲宝软件园·资讯

展开

python3.8动态人脸识别的实现示例

南叔先生 人气:0

本文着重讲解了python3.8动态人脸识别的实现示例,文中通过代码实例讲解的非常细致,对大家的工作和学习具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、准备依赖库

pip install dlib
pip python-opencv

二、代码实现 

#coding: utf-8
"""
从视屏中识别人脸,并实时标出面部特征点
"""
import dlib           #人脸识别的库dlib

import cv2           #图像处理的库OpenCv

# 使用特征提取器get_frontal_face_detector
detector = dlib.get_frontal_face_detector()
# 读入视频文件
# cap = cv2.VideoCapture("row.MP4")
#建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头
cap = cv2.VideoCapture(0)

# 设置视频参数,propId设置的视频参数,value设置的参数值
cap.set(3, 480)
# 截图screenshoot的计数器
cnt = 0
# cap.isOpened() 返回true/false 检查初始化是否成功
while(cap.isOpened()):

  # cap.read()
  # 返回两个值:
  #  一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
  #  图像对象,图像的三维矩阵
  flag, im_rd = cap.read()

  # 每帧数据延时1ms,延时为0读取的是静态帧
  k = cv2.waitKey(1)

  # 取灰度
  img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

  # 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数rects
  faces = detector(img_gray, 0)

  # 待会要显示在屏幕上的字体
  font = cv2.FONT_HERSHEY_SIMPLEX

  # 如果检测到人脸
  if(len(faces)!=0):

    # 对每个人脸都画出框框
    for i in range(len(faces)):
      # enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象
      for k, d in enumerate(faces):
        # 用红色矩形框出人脸
        cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 255, 0),2)
        # 计算人脸热别框边长
        face_width = d.right() - d.left()
        #在上方显示文字
        cv2.putText(im_rd, str(face_width) , (d.left(), d.top()-20), font, 0.5, (255, 0, 0), 1)
    # 标出人脸数
    cv2.putText(im_rd, "Faces: "+str(len(faces)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
  else:
    # 没有检测到人脸
    cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

  # 添加说明
  im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
  im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)


  #检测按键
  k = cv2.waitKey(1)
  # 按下s键截图保存
  if (k == ord('s')):
    cnt+=1
    cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd)
  # 按下q键退出
  if(k == ord('q')):
    break

  # 窗口显示
  cv2.imshow("camera", im_rd)

# 释放摄像头
cap.release()
# 删除建立的窗口
cv2.destroyAllWindows()

三、实验结果

加载全部内容

相关教程
猜你喜欢
用户评论