亲宝软件园·资讯

展开

Python绘图之柱形图绘制详解

吃着东西不想停 人气:0

本文着重讲解了Python绘图之柱形图绘制详解,文中通过代码实例讲解的非常细致,对大家的工作和学习具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

用python编程绘图,其实非常简单。中学生、大学生、研究生都能通过这10篇教程从入门到精通!快速绘制几种简单的柱状图。

1垂直柱图(普通柱图)

绘制普通柱图的python代码如下:

(左右滑动可以查看全部代码)

 # -*- coding:utf-8 -*-
 # 申明编码格式为utf-8
 
 import matplotlib as mpl
 import matplotlib.pyplot as plt
 mpl.rcParams["font.sans-serif"]=["SimHei"]
 #指定字体为SimHei,用于显示中文,如果Ariel,中文会乱码
 mpl.rcParams["axes.unicode_minus"]=False
#用来正常显示负号

x = [1,2,3,4,5,6,7,8]
y = [30,11,42,53,81,98,72,25]
#数据
abels=["A","B","C","D","E","F","G","H"]
#定义柱子的标签
plt.bar(x,y,align="center",color="rgb",tick_label=labels,hatch=" ",ec='gray')
#绘制纵向柱状图,hatch定义柱图的斜纹填充,省略该参数表示默认不填充。

#bar柱图函数还有以下参数:
#颜色:color,可以取具体颜色如red(简写为r),也可以用rgb让每条柱子采用不同颜色。
#描边:edgecolor(ec):边缘颜色;linestyle(ls):边缘样式;linewidth(lw):边缘粗细
#填充:hatch,取值:/,|,-,+,x,o,O,.,*
#位置标志:tick_label

plt.xlabel(u"样品编号")
plt.ylabel(u"库伦效率/%")

plt.show()

2 水平柱图

将上述代码稍微调整几行代码即可绘制出水平柱图。

(1)第19行“plt.bar”加一个字母h,即“plt.barh”

(2)第28和29行两行的“plt.xlabel”和“plt.ylable”中的x和y互换一下。

得到绘图效果如下:

3堆积柱图

将第1点中代码第14~21行代码调整如下:

(左右滑动可以查看全部代码)

x = [1,2,3,4,5,6,7,8]
y = [30,11,42,53,81,98,72,25]
y1= [45,23,44,67,88,89,65,75]
#数据
labels=["A","B","C","D","E","F","G","H"]
#定义柱子的标签
plt.bar(x,y,align="center",color="b",tick_label=labels,hatch=" ",ec='gray')
#绘制纵向柱状图,hatch定义柱图的斜纹填充,省略该参数表示默认不填充。
plt.bar(x,y1,align="center",color="g",tick_label=labels,hatch=" ",ec='gray',bottom=y)

绘制出垂直堆积图效果如下:

上述第22行是绘制y1第二组柱图,与第一组y柱图绘制的plt.bar()函数中不同的是,y1柱图的绘制参数中多了一个bottom=y,即柱图的底部设置为第一组y值,这样可以将y1堆积在y上。至于水平堆积柱图的python代码与上述类似。

4并列柱图

并列柱图,特别是带误差棒的柱图,是我们最常用的柱状图。

完整代码如下:

(左右滑动可以查看全部代码)

# -*- coding:utf-8 -*-
# 申明编码格式为utf-8

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np

mpl.rcParams["font.sans-serif"]=["SimHei"]
#指定字体为SimHei,用于显示中文,如果Ariel,中文会乱码
mpl.rcParams["axes.unicode_minus"]=False
#用来正常显示负号

x = np.arange(8) #产生1~8的序列
#注意:这里使用numpy库,需要在程序开始时导包“import numpy as np”
y = [10,11,22,33,41,58,62,75]
std_err=[2,4,5,6,8,9,8,6] #误差棒
y1= [15,23,44,67,88,99,95,85]
std_err1=[1,2,1,2,1,2,3,2] #误差棒
#数据
error_attri = dict(elinewidth=1,ecolor="r",capsize=3)
#定义误差棒属性的字典数据。这三个参数分别定义误差棒的线宽、颜色、帽子大小
tick_label=["A","B","C","D","E","F","G","H"]
#定义柱子的标签
bar_width=0.35
#定义柱宽
plt.bar(x,y,bar_width,color="lightgreen",align="center",label="掺杂前",yerr=std_err,error_kw=error_attri)
#绘制纵向柱状图,hatch定义柱图的斜纹填充,省略该参数表示默认不填充。

plt.xticks(x+bar_width/2,tick_label)
plt.xlabel("样品编号")
plt.ylabel("降解率/%")
plt.legend()
plt.show()

5堆积误差棒柱图

前面第4点中修改第28~32行如下:

 plt.bar(x,y,color="g",align="center",label="掺杂前",yerr=std_err,error_kw=error_attri)
#绘制纵向柱状图,hatch定义柱图的斜纹填充,省略该参数表示默认不填充。
plt.bar(x,y1,bottom=y,color="y",align="center",label="掺杂后",yerr=std_err1,error_kw=error_attri)
plt.xticks(x,tick_label)

即可绘制出堆积误差柱图,效果如下:

加载全部内容

相关教程
猜你喜欢
用户评论