keras CNN卷积核可视化,热度图教程
3D_DLW 人气:0本文着重讲解了keras CNN卷积核可视化,热度图教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
卷积核可视化
import matplotlib.pyplot as plt import numpy as np from keras import backend as K from keras.models import load_model # 将浮点图像转换成有效图像 def deprocess_image(x): # 对张量进行规范化 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 x += 0.5 x = np.clip(x, 0, 1) # 转化到RGB数组 x *= 255 x = np.clip(x, 0, 255).astype('uint8') return x # 可视化滤波器 def kernelvisual(model, layer_target=1, num_iterate=100): # 图像尺寸和通道 img_height, img_width, num_channels = K.int_shape(model.input)[1:4] num_out = K.int_shape(model.layers[layer_target].output)[-1] plt.suptitle('[%s] convnet filters visualizing' % model.layers[layer_target].name) print('第%d层有%d个通道' % (layer_target, num_out)) for i_kernal in range(num_out): input_img = model.input # 构建一个损耗函数,使所考虑的层的第n个滤波器的激活最大化,-1层softmax层 if layer_target == -1: loss = K.mean(model.output[:, i_kernal]) else: loss = K.mean(model.layers[layer_target].output[:, :, :, i_kernal]) # m*28*28*128 # 计算图像对损失函数的梯度 grads = K.gradients(loss, input_img)[0] # 效用函数通过其L2范数标准化张量 grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5) # 此函数返回给定输入图像的损耗和梯度 iterate = K.function([input_img], [loss, grads]) # 从带有一些随机噪声的灰色图像开始 np.random.seed(0) # 随机图像 # input_img_data = np.random.randint(0, 255, (1, img_height, img_width, num_channels)) # 随机 # input_img_data = np.zeros((1, img_height, img_width, num_channels)) # 零值 input_img_data = np.random.random((1, img_height, img_width, num_channels)) * 20 + 128. # 随机灰度 input_img_data = np.array(input_img_data, dtype=float) failed = False # 运行梯度上升 print('####################################', i_kernal + 1) loss_value_pre = 0 # 运行梯度上升num_iterate步 for i in range(num_iterate): loss_value, grads_value = iterate([input_img_data]) if i % int(num_iterate/5) == 0: print('Iteration %d/%d, loss: %f' % (i, num_iterate, loss_value)) print('Mean grad: %f' % np.mean(grads_value)) if all(np.abs(grads_val) < 0.000001 for grads_val in grads_value.flatten()): failed = True print('Failed') break if loss_value_pre != 0 and loss_value_pre > loss_value: break if loss_value_pre == 0: loss_value_pre = loss_value # if loss_value > 0.99: # break input_img_data += grads_value * 1 # e-3 img_re = deprocess_image(input_img_data[0]) if num_channels == 1: img_re = np.reshape(img_re, (img_height, img_width)) else: img_re = np.reshape(img_re, (img_height, img_width, num_channels)) plt.subplot(np.ceil(np.sqrt(num_out)), np.ceil(np.sqrt(num_out)), i_kernal + 1) plt.imshow(img_re) # , cmap='gray' plt.axis('off') plt.show()
运行
model = load_model('train3.h5') kernelvisual(model,-1) # 对最终输出可视化 kernelvisual(model,6) # 对第二个卷积层可视化
热度图
import cv2 import matplotlib.pyplot as plt import numpy as np from keras import backend as K from keras.preprocessing import image def heatmap(model, data_img, layer_idx, img_show=None, pred_idx=None): # 图像处理 if data_img.shape.__len__() != 4: # 由于用作输入的img需要预处理,用作显示的img需要原图,因此分开两个输入 if img_show is None: img_show = data_img # 缩放 input_shape = K.int_shape(model.input)[1:3] # (28,28) data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape)) # 添加一个维度->(1, 224, 224, 3) data_img = np.expand_dims(data_img, axis=0) if pred_idx is None: # 预测 preds = model.predict(data_img) # 获取最高预测项的index pred_idx = np.argmax(preds[0]) # 目标输出估值 target_output = model.output[:, pred_idx] # 目标层的输出代表各通道关注的位置 last_conv_layer_output = model.layers[layer_idx].output # 求最终输出对目标层输出的导数(优化目标层输出),代表目标层输出对结果的影响 grads = K.gradients(target_output, last_conv_layer_output)[0] # 将每个通道的导数取平均,值越高代表该通道影响越大 pooled_grads = K.mean(grads, axis=(0, 1, 2)) iterate = K.function([model.input], [pooled_grads, last_conv_layer_output[0]]) pooled_grads_value, conv_layer_output_value = iterate([data_img]) # 将各通道关注的位置和各通道的影响乘起来 for i in range(conv_layer_output_value.shape[-1]): conv_layer_output_value[:, :, i] *= pooled_grads_value[i] # 对各通道取平均得图片位置对结果的影响 heatmap = np.mean(conv_layer_output_value, axis=-1) # 规范化 heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) # plt.matshow(heatmap) # plt.show() # 叠加图片 # 缩放成同等大小 heatmap = cv2.resize(heatmap, (img_show.shape[1], img_show.shape[0])) heatmap = np.uint8(255 * heatmap) # 将热图应用于原始图像.由于opencv热度图为BGR,需要转RGB superimposed_img = img_show + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)[:,:,::-1] * 0.4 # 截取转uint8 superimposed_img = np.minimum(superimposed_img, 255).astype('uint8') return superimposed_img, heatmap # 显示图片 # plt.imshow(superimposed_img) # plt.show() # 保存为文件 # superimposed_img = img + cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) * 0.4 # cv2.imwrite('ele.png', superimposed_img) # 生成所有卷积层的热度图 def heatmaps(model, data_img, img_show=None): if img_show is None: img_show = np.array(data_img) # Resize input_shape = K.int_shape(model.input)[1:3] # (28,28,1) data_img = image.img_to_array(image.array_to_img(data_img).resize(input_shape)) # 添加一个维度->(1, 224, 224, 3) data_img = np.expand_dims(data_img, axis=0) # 预测 preds = model.predict(data_img) # 获取最高预测项的index pred_idx = np.argmax(preds[0]) print("预测为:%d(%f)" % (pred_idx, preds[0][pred_idx])) indexs = [] for i in range(model.layers.__len__()): if 'conv' in model.layers[i].name: indexs.append(i) print('模型共有%d个卷积层' % indexs.__len__()) plt.suptitle('heatmaps for each conv') for i in range(indexs.__len__()): ret = heatmap(model, data_img, indexs[i], img_show=img_show, pred_idx=pred_idx) plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 1)\ .set_title(model.layers[indexs[i]].name) plt.imshow(ret[0]) plt.axis('off') plt.subplot(np.ceil(np.sqrt(indexs.__len__()*2)), np.ceil(np.sqrt(indexs.__len__()*2)), i*2 + 2)\ .set_title(model.layers[indexs[i]].name) plt.imshow(ret[1]) plt.axis('off') plt.show()
运行
from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input model = VGG16(weights='imagenet') data_img = image.img_to_array(image.load_img('elephant.png')) # VGG16预处理:RGB转BGR,并对每一个颜色通道去均值中心化 data_img = preprocess_input(data_img) img_show = image.img_to_array(image.load_img('elephant.png')) heatmaps(model, data_img, img_show)
elephant.png
结语
踩坑踩得我脚疼
以上这篇keras CNN卷积核可视化,热度图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
加载全部内容