akka-typed(2) - typed-actor交流方式和交流协议
雪川大虫 人气:1akka系统是一个分布式的消息驱动系统。akka应用由一群负责不同运算工作的actor组成,每个actor都是被动等待外界的某种消息来驱动自己的作业。所以,通俗点描述:akka应用就是一群actor相互之间发送消息的系统,每个actor接收到消息后开始自己负责的工作。对于akka-typed来说,typed-actor只能接收指定类型的消息,所以actor之间的消息交流需要按照消息类型来进行,即需要协议来规范消息交流机制。想想看,如果用户需要一个actor做某件事,他必须用这个actor明白的消息类型来发送消息,这就是一种交流协议。
所谓消息交流方式包括单向和双向两类。如果涉及两个actor之间的消息交换,消息发送方式可以是单向和双向的。但如果是从外界向一个actor发送消息,那么肯定只能是单向的发送方式了,因为消息发送两端只有一端是actor。
典型的单向消息发送fire-and-forget如下:
import akka.actor.typed._ import scaladsl._ object Printer { case class PrintMe(message: String) // 只接收PrintMe类型message def apply(): Behavior[PrintMe] = Behaviors.receive { case (context, PrintMe(message)) => context.log.info(message) Behaviors.same } } object FireAndGo extends App { // system就是一个root-actor val system: ActorRef[Printer.PrintMe] = ActorSystem(Printer(), "fire-and-forget-sample") val printer: ActorRef[Printer.PrintMe] = system // 单向消息发送,printMe类型的消息 printer ! Printer.PrintMe("hello") printer ! Printer.PrintMe("world!") system.asInstanceOf[ActorSystem[Printer.PrintMe]].terminate() }
当然,在现实中通常我们要求actor去进行某些运算然后返回运算结果。这就涉及到actor之间双向信息交换了。第一种情况:两个actor之间的消息是任意无序的,这是一种典型的无顺序request-response模式。就是说一个response不一定是按照request的接收顺序返回的,只是它们之间能够交流而已。不过,在akka-typed中这种模式最基本的要求就是发送的消息类型必须符合接收方actor的类型。
好了,我们先对这个模式做个示范。所有actor的定义可以先从它的消息类型开始。对每个参加双向交流的actor来说,可以从request和response两种消息来反映它的功能:
object FrontEnd { sealed trait FrontMessages case class SayHi(who: String) extends FrontMessages } object BackEnd { //先从这个actor的回应消息开始 sealed trait Response case class HowAreU(msg: String) extends Response case object Unknown extends Response //可接收消息类型 sealed trait BackMessages //这个replyTo应该是一个能处理Reponse类型消息的actor case class MakeHello(who: String, replyTo: ActorRef[Response]) extends BackMessages }
这个FrontEnd接收SayHi消息后开始工作,不过目前还没有定义返回的消息类型。BackEnd接到MakeHello类型消息后返回response类型消息。从这个角度来讲,返回的对方actor必须能够处理Response类型的消息。
我们试试实现这个FrontEnd actor:
object FrontEnd { sealed trait FrontMessages case class SayHi(who: String) extends FrontMessages def apply(backEnd: ActorRef[BackEnd.BackMessages]): Behavior[FrontMessages] = { Behaviors.receive { (ctx,msg) => msg match { case SayHi(who) => ctx.log.info("requested to say hi to {}", who) backEnd ! BackEnd.MakeHello(who, ???) } } }
MakeHello需要一个replyTo,应该是什么呢?不过它一定是可以处理Response类型消息的actor。但我们知道这个replyTo就是FrontEnd,不过FrontEnd只能处理FrontMessages类型消息,应该怎么办呢?可不可以把replyTo直接写成FrontEnd呢?虽然可以这么做,但这个MakeHello消息就只能跟FrontEnd绑死了。如果其它的actor也需要用到这个MakeHello的话就需要另外定义一个了。所以,最好的解决方案就是用某种类型转换方式来实现。如下:
import akka.actor.typed._ import scaladsl._ object FrontEnd { sealed trait FrontMessages case class SayHi(who: String) extends FrontMessages case class WrappedBackEndResonse(res: BackEnd.Response) extends FrontMessages def apply(backEnd: ActorRef[BackEnd.BackMessages]): Behavior[FrontMessages] = { Behaviors.setup[FrontMessages] { ctx => //ctx.messageAdapter(ref => WrappedBackEndResonse(ref)) val backEndRef: ActorRef[BackEnd.Response] = ctx.messageAdapter(WrappedBackEndResonse) Behaviors.receive { (ctx, msg) => msg match { case SayHi(who) => ctx.log.info("requested to say hi to {}", who) backEnd ! BackEnd.MakeHello(who, backEndRef) Behaviors.same //messageAdapter将BackEnd.Response转换成WrappedBackEndResponse case WrappedBackEndResonse(msg) => msg match { case BackEnd.HowAreU(msg) => ctx.log.info(msg) Behaviors.same case BackEnd.Unknown => ctx.log.info("Unable to say hello") Behaviors.same } } } } } }
首先,我们用ctx.mesageAdapter产生了ActorRef[BackEnd.Response],正是我们需要提供给MakeHello消息的replyTo。看看这个messageAdapter函数:
def messageAdapter[U: ClassTag](f: U => T): ActorRef[U]
如果我们进行类型替换U -> BackEnd.Response, T -> FrontMessage 那么:
val backEndRef: ActorRef[BackEnd.Response] = ctx.messageAdapter((response: BackEnd.Response) => WrappedBackEndResonse(response))
实际上这个messageAdapter函数在本地ActorContext范围内登记了一个从BackEnd.Response类型到FrontMessages的转换。把接收到的BackEnd.Response立即转换成WrappedBackEndResponse(response)。
还有一种两个actor之间的双向交流模式是 1:1 request-response,即一对一模式。一对一的意思是发送方发送消息后等待回应消息。这就意味着收信方需要在完成运算任务后立即向发信方发送回应,否则造成发信方的超时异常。无法避免的是,这种模式依然会涉及消息类型的转换,如下:
object FrontEnd { sealed trait FrontMessages case class SayHi(who: String) extends FrontMessages case class WrappedBackEndResonse(res: BackEnd.Response) extends FrontMessages case class ErrorResponse(errmsg: String) extends FrontMessages def apply(backEnd: ActorRef[BackEnd.BackMessages]): Behavior[FrontMessages] = { Behaviors.setup[FrontMessages] { ctx => //ask需要超时上限 import scala.concurrent.duration._ import scala.util._ implicit val timeOut: Timeout = 3.seconds Behaviors.receive[FrontMessages] { (ctx, msg) => msg match { case SayHi(who) => ctx.log.info("requested to say hi to {}", who) ctx.ask(backEnd,(backEndRef: ActorRef[BackEnd.Response]) => BackEnd.MakeHello(who,backEndRef) ){ case Success(backResponse) => WrappedBackEndResonse(backResponse) case Failure(err) =>ErrorResponse(err.getLocalizedMessage) } Behaviors.same case WrappedBackEndResonse(msg) => msg match { case BackEnd.HowAreU(msg) => ctx.log.info(msg) Behaviors.same case BackEnd.Unknown => ctx.log.info("Unable to say hello") Behaviors.same } case ErrorResponse(errmsg) => ctx.log.info("ask error: {}",errmsg) Behaviors.same } } } } }
似乎类型转换是在ask里实现的,看看这个函数:
def ask[Req, Res](target: RecipientRef[Req], createRequest: ActorRef[Res] => Req)( mapResponse: Try[Res] => T)(implicit responseTimeout: Timeout, classTag: ClassTag[Res]): Unit
req -> BackEnd.BackMessages, res -> BackEnd.Response, T -> FrontMessages。现在ask可以写成下面这样:
ctx.ask[BackEnd.BackMessages,BackEnd.Response](backEnd, (backEndRef: ActorRef[BackEnd.Response]) => BackEnd.MakeHello(who,backEndRef) ){ case Success(backResponse:BackEnd.Response) => WrappedBackEndResonse(backResponse) case Failure(err) =>ErrorResponse(err.getLocalizedMessage) }
这样看起来更明白点,也就是说ask把接收的BackEnd.Response转换成了FrontEnd处理的消息类型WrappedBackEndRespnse,也就是FrontMessages
还有一种ask模式是在actor之外进行的,如下:
object AskDemo extends App { import akka.actor.typed.scaladsl.AskPattern._ import scala.concurrent._ import scala.concurrent.duration._ import akka.util._ import scala.util._ implicit val system: ActorSystem[BackEnd.BackMessages] = ActorSystem(BackEnd(), "front-app") // asking someone requires a timeout if the timeout hits without response // the ask is failed with a TimeoutException implicit val timeout: Timeout = 3.seconds val result: Future[BackEnd.Response] = system.asInstanceOf[ActorRef[BackEnd.BackMessages]] .ask[BackEnd.Response]((ref: ActorRef[BackEnd.Response]) => BackEnd.MakeHello("John", ref)) // the response callback will be executed on this execution context implicit val ec = system.executionContext result.onComplete { case Success(res) => res match { case BackEnd.HowAreU(msg) => println(msg) case BackEnd.Unknown => println("Unable to say hello") } case Failure(ex) => println(s"error: ${ex.getMessage}") } system.terminate() }
这个ask是在akka.actor.typed.scaladsl.AskPattern包里。函数款式如下:
def ask[Res](replyTo: ActorRef[Res] => Req)(implicit timeout: Timeout, scheduler: Scheduler): Future[Res]
向ask传入一个函数ActorRef[BackEnd.Response] => BackEnd.BackMessages,然后返回Future[BackEnd.Response]。这个模式中接收回复方是在ActorContext之外,不存在消息截获机制,所以不涉及消息类型的转换。
另一种单actor双向消息交换模式,即自己ask自己。在ActorContext内向自己发送消息并提供回应消息的接收,如pipeToSelf:
object PipeFutureTo { trait CustomerDataAccess { def update(value: Customer): Future[Done] } final case class Customer(id: String, version: Long, name: String, address: String) object CustomerRepository { sealed trait Command final case class Update(value: Customer, replyTo: ActorRef[UpdateResult]) extends Command sealed trait UpdateResult final case class UpdateSuccess(id: String) extends UpdateResult final case class UpdateFailure(id: String, reason: String) extends UpdateResult private final case class WrappedUpdateResult(result: UpdateResult, replyTo: ActorRef[UpdateResult]) extends Command private val MaxOperationsInProgress = 10 def apply(dataAccess: CustomerDataAccess): Behavior[Command] = { Behaviors.setup[Command] { ctx => implicit val dispatcher = ctx.system.dispatchers.lookup(DispatcherSelector.fromConfig("my-dispatcher")) next(dataAccess, operationsInProgress = 0) } } private def next(dataAccess: CustomerDataAccess, operationsInProgress: Int)(implicit ec: ExecutionContextExecutor): Behavior[Command] = { Behaviors.receive { (context, command) => command match { case Update(value, replyTo) => if (operationsInProgress == MaxOperationsInProgress) { replyTo ! UpdateFailure(value.id, s"Max $MaxOperationsInProgress concurrent operations supported") Behaviors.same } else { val futureResult = dataAccess.update(value) context.pipeToSelf(futureResult) { // map the Future value to a message, handled by this actor case Success(_) => WrappedUpdateResult(UpdateSuccess(value.id), replyTo) case Failure(e) => WrappedUpdateResult(UpdateFailure(value.id, e.getMessage), replyTo) } // increase operationsInProgress counter next(dataAccess, operationsInProgress + 1) } case WrappedUpdateResult(result, replyTo) => // send result to original requestor replyTo ! result // decrease operationsInProgress counter next(dataAccess, operationsInProgress - 1) } } } } }
加载全部内容