亲宝软件园·资讯

展开

Java Stream.reduce()用法详细解析

向着百万年薪努力的小赵 人气:0

在学习这个函数的用法之前,我们要先知道这个函数参数的意义

基本使用

先举一个简单的例子:

算法题:Words
题目描述
每个句子由多个单词组成,句子中的每个单词的长度都可能不一样,我们假设每个单词的长度Ni为该单词的重量,你需要做的就是给出整个句子的平均重量V。

解答要求
时间限制:1000ms, 内存限制:100MB
输入
输入只有一行,包含一个字符串S(长度不会超过100),代表整个句子,句子中只包含大小写的英文字母,每个单词之间有一个空格。

输出
输出句子S的平均重量V(四舍五入保留两位小数)。

Who Love Solo
输出样例 
3.67

这道题的意思是求一句话中每个单词的平均长度,我们求得总长度然后除以单词数量即可,刚好能用到reduce()这个方法。

public class Demo {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        String[] s = sc.nextLine().split(" ");
        double res = Arrays.stream(s).mapToDouble(a ->a.length()).reduce(0,(a,b)->a+b);
        System.out.println(String.format("%.2f",res/s.length));
    }
}

在代码中,.reduce(0,(a,b)->a+b);这一块就是我们经典的使用案例,我们要先明白其中a,b的含义,然后再学习如何使用
关键概念:初始值的定义(Identity),累加器(Accumulator),组合器(Combiner)

也就是说0就是我们的初始值,(a,b)->a+b就是我们的累加器,其中a就是上一次的计算结果,b就是Stream流中当前元素,而后面的a+b则是计算规则,比如如果我们改成a*b,那就是计算乘积了,当然我们也可以用方法引用来代替 lambda 表达式。

double res = Arrays.stream(s).mapToDouble(a ->a.length()).reduce(0,Double::sum);

这就是最基本的使用了,不知道小伙伴们有没有学会呢?

额外举例

当然,我们可以用reduce 方法处理其他类型的 stream,例如,可以操作一个 String 类型的数组,把数组的字符串进行拼接。

List<String> letters = Arrays.asList("a", "b", "c", "d", "e");
String result = letters
  .stream()
  .reduce("", (partialString, element) -> partialString + element);
assertThat(result).isEqualTo("abcde");

同样也可以用方法引用来简化代码

String result = letters.stream().reduce("", String::concat);
assertThat(result).isEqualTo("abcde");

我们再把上面的拼接字符串的例子改下需求,先把字符串转变成大写然后再拼接

String result = letters
  .stream()
  .reduce(
    "", (partialString, element) -> partialString.toUpperCase() + element.toUpperCase());
assertThat(result).isEqualTo("ABCDE");

另外,我们可以并行地归并元素(并行归并,下面会详细讲解),如下并行归并一个数字数组来求和

List<Integer> ages = Arrays.asList(25, 30, 45, 28, 32);
int computedAges = ages.parallelStream().reduce(0, a, b -> a + b, Integer::sum);

当对一个流进行并行操作时,在运行时会把流分割多个子流来并行操作。在上面例子中,我们需要一个函数来组合各个子流返回的结果,这个函数就是前面提到的Combiner(组合器)。

有一个注意点,下面的代码无法通过编译

List<User> users = Arrays.asList(new User("John", 30), new User("Julie", 35));
int computedAges = 
  users.stream().reduce(0, (partialAgeResult, user) -> partialAgeResult + user.getAge());

上代码无法编译的原因是,流中包含的是User 对象,但是累加函数的参数分别是数字和user 对象,而累加器的实现是求和,所以编译器无法推断参数 user 的类型。可以把代码改为如下可以通过编译

int result = users.stream()
  .reduce(0, (partialAgeResult, user) -> partialAgeResult + user.getAge(), Integer::sum);
assertThat(result).isEqualTo(65);

当顺序读流或者累加器的参数和它的实现的类型匹配时,我们不需要使用组合器。

并行读流

如上文提到的,我们可以并行的使用 reduce() 方法。并行使用时,要注意一下几点:

处理异常

在以上的例子中,reduce 方法都没抛出异常,如果出现异常我们该如何优雅的处理异常呢?看下面例子:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6);
int divider = 2;
int result = numbers.stream().reduce(0, a / divider + b / divider);

如果 divider =0 , 会抛出 ArithmeticException,遇到这种情况,一般的处理方法使用 try/catch 捕获异常

public static int divideListElements(List<Integer> values, int divider) {
    return values.stream()
      .reduce(0, (a, b) -> {
          try {
              return a / divider + b / divider;
          } catch (ArithmeticException e) {
              LOGGER.log(Level.INFO, "Arithmetic Exception: Division by Zero");
          }
          return 0;
      });
}

如果直接使用 try/catch 会影响代码的可读性,我们可以把 divide 的操作封装一个单独的方法,并在里面捕获异常,如下:

rivate static int divide(int value, int factor) {
    int result = 0;
    try {
        result = value / factor;
    } catch (ArithmeticException e) {
        LOGGER.log(Level.INFO, "Arithmetic Exception: Division by Zero");
    }
    return result
}

divideListElements 调用 divide 方法

public static int divideListElements(List<Integer> values, int divider) {
    return values.stream().reduce(0, (a, b) -> divide(a, divider) + divide(b, divider));
}

复杂对象的处理

我们可以使用 reduce 方法处理复杂的对象,reduce 需要接受和复杂对象相对应的 identity、accumulator、combiner。
假设一个场景:计算一个网站用户的评分,该评分是所有用户所有评论的平均值。

有个类 Review 定义如下:

public class Review {
 
    private int points;
    private String review;
 
    // constructor, getters and setters
}

类 Rating 引用 Review 计算用户的评分

public class Rating {
 
    double points;
    List<Review> reviews = new ArrayList<>();
 
    public void add(Review review) {
        reviews.add(review);
        computeRating();
    }
 
    private double computeRating() {
        double totalPoints = 
          reviews.stream().map(Review::getPoints).reduce(0, Integer::sum);
        this.points = totalPoints / reviews.size();
        return this.points;
    }
 
    public static Rating average(Rating r1, Rating r2) {
        Rating combined = new Rating();
        combined.reviews = new ArrayList<>(r1.reviews);
        combined.reviews.addAll(r2.reviews);
        combined.computeRating();
        return combined;
    }
 
}

先组装一些用户和用户的评论

User john = new User("John", 30);
john.getRating().add(new Review(5, ""));
john.getRating().add(new Review(3, "not bad"));
User julie = new User("Julie", 35);
john.getRating().add(new Review(4, "great!"));
john.getRating().add(new Review(2, "terrible experience"));
john.getRating().add(new Review(4, ""));
List<User> users = Arrays.asList(john, julie);

调用 reduce 方法处理评分

Rating averageRating = users.stream()
  .reduce(new Rating(), 
    (rating, user) -> Rating.average(rating, user.getRating()), 
    Rating::average);

不知道大家学会了吗?

总结

加载全部内容

相关教程
猜你喜欢
用户评论