pandas中的DataFrame数据遍历解读
大虾飞哥哥 人气:0pandas DataFrame数据遍历
读取csv内容,格式与数据类型如下
data = pd.read_csv('save\LH8888.csv') print(type(data)) print(data)
输出结果如下:
按行遍历数据:iterrows
获取行名:名字、年龄、身高、体重
for i, line in data.iterrows(): print(i) print(line) print(line['date'])
输出结果如下:
i
:是数据的索引,表示第几行数据line
:是每一行的具体数据line[‘date’]
:通过字典的方式,能够读取数据
按行遍历数据:itertuples
for line in data.itertuples(): print(line)
输出结果如下:
访问date方式如下:
for line in data.itertuples(): print(line) print(getattr(line, 'date')) print(line[1])
输出结果如下:
按列遍历数据:iteritems
for i, index in data.iteritems(): print(index)
输出结果如下,使用方式同iterrows。
读取和修改某一个数据
例如:我们想要读取 行索引为:1,列索引为:volume的值 27,代码如下:
iloc
:需要输入索引值,索引从0开始loc
:需要输入对应的行名和列名
print(data.iloc[1, 5]) print(data.loc[1, 'volume'])
例如:我们想要将 行索引为:1,列索引为:volume的值 27 修改为10,代码如下:
data.iloc[1, 5] = 10 print(data.loc[1, 'volume']) print(data)
输出结果如下:
遍历dataframe中每一个数据
for i in range(data.shape[0]): for j in range(data.shape[1]): print(data.iloc[i, j])
输出结果如下,按行依次打印:
dataframe遍历效率对比
构建数据
import pandas as pd import numpy as np # 生成樣例數據 def gen_sample(): aaa = np.random.uniform(1,1000,3000) bbb = np.random.uniform(1,1000,3000) ccc = np.random.uniform(1,1000,3000) ddd = np.random.uniform(1,1000,3000) return pd.DataFrame({'aaa':aaa,'bbb':bbb, 'ccc': ccc, 'ddd': ddd})
9种遍历方法
# for + iloc 定位 def method0_sum(DF): for i in range(len(DF)): a = DF.iloc[i,0] + DF.iloc[i,1] # for + iat 定位 def method1_sum(DF): for i in range(len(DF)): a = DF.iat[i,0] + DF.iat[i,1] # pandas.DataFrame.iterrows() 迭代器 def method2_sum(DF): for index, rows in DF.iterrows(): a = rows['aaa'] + rows['bbb'] # pandas.DataFrame.apply 迭代 def method3_sum(DF): a = DF.apply(lambda x: x.aaa + x.bbb, axis=1) # pandas.DataFrame.apply 迭代 def method4_sum(DF): a = DF[['aaa','bbb']].apply(lambda x: x.aaa + x.bbb, axis=1) # 列表 def method5_sum(DF): a = [ a+b for a,b in zip(DF['aaa'],DF['bbb']) ] # pandas def method6_sum(DF): a = DF['aaa'] + DF['bbb'] # numpy def method7_sum(DF): a = DF['aaa'].values + DF['bbb'].values # for + itertuples def method8_sum(DF): for row in DF.itertuples(): a = getattr(row, 'aaa') + getattr(row, 'bbb')
效率对比
df = gen_sample() print('for + iloc 定位:') %timeit method0_sum(df) df = gen_sample() print('for + iat 定位:') %timeit method1_sum(df) df = gen_sample() print('apply 迭代:') %timeit method3_sum(df) df = gen_sample() print('apply 迭代 + 兩列:') %timeit method4_sum(df) df = gen_sample() print('列表:') %timeit method5_sum(df) df = gen_sample() print('pandas 数组操作:') %timeit method6_sum(df) df = gen_sample() print('numpy 数组操作:') %timeit method7_sum(df) df = gen_sample() print('for itertuples') %timeit method8_sum(df) df = gen_sample() print('for iteritems') %timeit method9_sum(df) df = gen_sample() print('for iterrows:') %timeit method2_sum(df)
结果:
for + iloc 定位:
225 ms ± 9.14 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
for + iat 定位:
201 ms ± 6.37 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
apply 迭代:
88.3 ms ± 2.3 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
apply 迭代 + 兩列:
91.2 ms ± 5.29 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
列表:
1.12 ms ± 54.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
pandas 数组操作:
262 µs ± 9.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
numpy 数组操作:
14.4 µs ± 383 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
for itertuples
6.4 ms ± 265 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
for iterrows:
330 ms ± 22.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
说下结论
numpy数组 > iteritems > pandas数组 > 列表 > itertuples > apply > iat > iloc > iterrows
itertuples > iterrows ;快50倍
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。
加载全部内容