亲宝软件园·资讯

展开

浅析Python是如何实现集合的

古明地觉 人气:0

楔子

有几天没有更新 Python 文章了,本次我们来聊一下 Python 的集合是怎么实现的?之前我们介绍过字典的实现原理,它底层是基于哈希表实现的,而集合也是如此。

并且字典和集合实现的哈希表是一样的,在计算哈希值、解决索引冲突等方面,两者没有任何区别。唯一的区别就是存储的 entry 不同,字典的 entry 里面包含了 key、value 和 key 的哈希值,而集合的 entry 里面只包含 key 和 key 的哈希值。

事实上,集合就类似于没有value的字典。

集合的使用场景

那么集合都有哪些用处呢?

1)去重

chars = ["a", "b", "a", "c", "c"]

print(
    list(set(chars))
)  # ['b', 'a', 'c']

再比如你需要监听一个队列,处理接收到的消息,但每一条消息都有一个编号,要保证具有相同编号的消息只能被处理一次,要怎么做呢?

显然集合此时就派上用场了,我们可以创建一个集合,每来一条消息,就检测它的编号是否在集合中。如果存在,则说明消息已经被处理过了,忽略掉;如果不存在,说明消息还没有被处理,那么就将它的编号添加到集合中,然后处理消息。

这里暂时不考虑消费失败等情况,我们假设每条消息都是能处理成功的。

2)判断某个序列是否包含指定的多个元素

data = ["S", "A", "T", "O", "R", "I"]

# 现在要判断 data 是否包含 "T"、"R" 和 "I"
# 如果使用列表的话
print(
    "T" in data and "R" in data and "I" in data
)  # True

# 显然这是比较麻烦的,于是我们可以使用集合
print(
    set(data) >= {"T", "R", "I"}
)  # True

同理,基于此方式,我们也可以检测一个字典是否包含指定的多个 key。

data = {
    "name": "satori",
    "age": 17,
    "gender": "female"
}

# 判断字典是否包含 name、age、gender 三个 key
print(
    data.keys() >= {"name", "age", "gender"}
)  # True

# 字典的 keys 方法会返回一个 dict_keys 对象
# 该对象具备集合的性质,可以直接和集合进行运算

显然对于这种需求,有了集合就方便多了。

集合的 API

然后我们来罗列一下集合支持的 API,在使用集合的时候要做到心中有数。

# 如果要创建一个空集合,那么要使用 set()
# 写成 {} 的话,解释器会认为这是一个空字典
s = {1, 2, 3}

# 添加元素,时间复杂度是 O(1)
s.add(4)
print(s)  # {1, 2, 3, 4}

# 删除指定的元素,如果元素不存在则报出 KeyError
# 时间复杂度为 O(1)
s.remove(2)
print(s)  # {1, 3, 4}

# 删除指定的元素,如果元素不存在则什么也不做
# 时间复杂度为 O(1)
s.discard(666)
print(s)  # {1, 3, 4}

# 随机弹出一个元素并返回
# 时间复杂度为 O(1)
print(s.pop())  # 1
print(s)  # {3, 4}

# 清空一个集合
s.clear()
print(s)  # set()

# 还有一些 API,但我们更推荐使用操作符的方式
# 两个集合取交集
print({1, 2} & {2, 3})  # {2}

# 两个集合取并集
print({1, 2} | {2, 3})  # {1, 2, 3}

# 两个集合取差集
# s1 - s2,返回在 s1、但不在 s2 当中的元素
print({1, 2, 3} - {2, 3, 4})  # {1}

# 两个集合取对称差集
# s1 ^ s2,返回既不在 s1、也不在 s2 当中的元素
print({1, 2, 3} ^ {2, 3, 4})  # {1, 4}

# 判断两个集合是否相等,也就是内部的元素是否完全一致
# 顺序无所谓,只比较元素是否全部相同
print({1, 2, 3} == {3, 2, 1})  # True
print({1, 2, 3} == {1, 2, 4})  # False

# 判断一个集合是否包含另一个集合的所有元素
# 假设有两个集合 s1 和 s2:
#    如果 s1 的元素都在 s2 中,那么 s2 >= s1;
#    如果 s2 的元素都在 s1 中,那么 s1 >= s2;
#    如果 s1 和元素和 s2 全部相同,那么 s1 == s2;
print({1, 2, 3} > {1, 2})  # True
print({1, 2, 3} >= {1, 2, 3})  # True

以上就是集合支持的一些 API,还是很简单的,下面来重点看一下集合的底层结构。

集合的底层结构

集合的数据结构定义在 setobject.h 中,那么它长什么样子呢?

typedef struct {
    PyObject_HEAD
    Py_ssize_t fill;
    Py_ssize_t used;            
    Py_ssize_t mask;
    setentry *table;
    Py_hash_t hash;   
    Py_ssize_t finger;          
    setentry smalltable[PySet_MINSIZE];
    PyObject *weakreflist;    
} PySetObject;

解释一下这些字段的含义:

有了字典的经验,再看集合会简单很多。然后是 setentry,用于承载集合内的元素,那么它的结构长什么样呢?相信你能够猜到。

typedef struct {
    PyObject *key; 
    Py_hash_t hash;
} setentry;

相比字典少了一个 value,这是显而易见的。因此集合的结构很清晰了,假设有一个集合 {3.14, "abc", 666},那么它的结构如下:

由于集合里面只有三个元素,所以它们都会存在 smalltable 数组里面,我们通过 ctypes 来证明这一点。

from ctypes import *

class PyObject(Structure):
    _fields_ = [
        ("ob_refcnt", c_ssize_t),
        ("ob_type", c_void_p),
    ]

class SetEntry(Structure):
    _fields_ = [
        ("key", POINTER(PyObject)),
        ("hash", c_longlong)
    ]

class PySetObject(PyObject):
    _fields_ = [
        ("fill", c_ssize_t),
        ("used", c_ssize_t),
        ("mask", c_ssize_t),
        ("table", POINTER(SetEntry)),
        ("hash", c_long),
        ("finger", c_ssize_t),
        ("smalltable", (SetEntry * 8)),
        ("weakreflist", POINTER(PyObject)),
    ]


s = {3.14, "abc", 666}
# 先来打印一下哈希值
print('hash(3.14) =', hash(3.14))
print('hash("abc") =', hash("abc"))
print('hash(666) =', hash(666))
"""
hash(3.14) = 322818021289917443
hash("abc") = 8036038346376407734
hash(666) = 666
"""

# 获取PySetObject结构体实例
py_set_obj = PySetObject.from_address(id(s))
# 遍历smalltable,打印索引、和哈希值
for index, entry in enumerate(py_set_obj.smalltable):
    print(index, entry.hash)
"""
0 0
1 0
2 666
3 322818021289917443
4 0
5 0
6 8036038346376407734
7 0
"""

根据输出的哈希值我们可以断定,这三个元素确实存在了 smalltable 数组里面,并且 666 存在了数组索引为 2 的位置、3.14 存在了数组索引为 3 的位置、"abc" 存在了数组索引为 6 的位置。

当然,由于哈希值是随机的,所以每次执行之后打印的结果都可能不一样,但是整数除外,它的哈希值就是它本身。既然哈希值不一样,那么每次映射出的索引也可能不同,但总之这三个元素是存在 smalltable 数组里面的。

然后我们再考察一下其它的字段:

s = {3.14, "abc", 666}
py_set_obj = PySetObject.from_address(id(s))
# 集合里面有 3 个元素,所以 fill 和 used 都是 3
print(py_set_obj.fill)  # 3
print(py_set_obj.used)  # 3

# 将集合元素全部删除
# 这里不能用 s.clear(),原因一会儿说
for _ in range(len(s)):
    s.pop()
    
# 我们知道哈希表在删除元素的时候是伪删除
# 所以 fill 不变,但是 used 每次会减 1
print(py_set_obj.fill)  # 3
print(py_set_obj.used)  # 0

fill 成员维护的是 active 态的 entry 数量加上 dummy 态的 entry 数量,所以删除元素时它的大小是不变的;但 used 成员的值每次会减 1,因为它维护的是 active 态的 entry 的数量。所以只要不涉及元素的删除,那么这两者的大小是相等的。

然后我们上面说不能用 s.clear(),因为该方法表示清空集合,此时会重置为初始状态,然后 fill 和 used 都会是 0,我们就观察不到想要的现象了。

删除集合所有元素之后,我们再往里面添加元素,看看是什么效果:

s = {3.14, "abc", 666}
py_set_obj = PySetObject.from_address(id(s))
for _ in range(len(s)):
    s.pop()

# 添加一个元素
s.add(0)
print(py_set_obj.fill)  # 3
print(py_set_obj.used)  # 1

多次执行的话,会发现打印的结果可能是 3、1,也有可能是 4、1。至于原因,有了字典的经验,相信你肯定能猜到。

首先添加元素之后,used 肯定为 1。至于 fill,如果添加元素的时候,正好撞上了一个 dummy 态的 entry,那么将其替换掉,此时 fill 不变,仍然是 3;如果没有撞上 dummy 态的 entry,而是添加在了新的位置,那么 fill 就是 4。

for i in range(1, 10):
    s.add(i)
print(py_set_obj.fill)  # 10
print(py_set_obj.used)  # 10
s.pop()
print(py_set_obj.fill)  # 10
print(py_set_obj.used)  # 9

在之前代码的基础上,继续添加 9 个元素,然后 used 变成了10,这很好理解,因为此时集合有 10 个元素。但 fill 也是10,这是为什么?很简单,因为哈希表扩容了,扩容时会删除 dummy 态的 entry,所以 fill 和 used 是相等的。同理,如果再继续 pop,那么 fill 和 used 就又变得不相等了。

集合的创建

集合的结构我们已经清楚了,再来看看它的初始化过程。我们调用类 set,传入一个可迭代对象,便可创建一个集合,这个过程是怎样的呢?

PyObject *
PySet_New(PyObject *iterable)
{  
    //底层调用了make_new_set
    return make_new_set(&PySet_Type, iterable);
}

底层提供了PySet_New函数用于创建一个集合,接收一个可迭代对象,然后调用 make_new_set 进行创建。

static PyObject *
make_new_set(PyTypeObject *type, PyObject *iterable)
{  
    // PySetObject *指针
    PySetObject *so;
  
    // 申请集合所需要的内存
    so = (PySetObject *)type->tp_alloc(type, 0);
    //申请失败,返回 NULL
    if (so == NULL)
        return NULL;
  
    // fill 和 used 初始都为 0
    so->fill = 0;
    so->used = 0;
    // PySet_MINSIZE 默认为 8
    // 而 mask 等于哈希表容量减 1,所以初始值是 7
    so->mask = PySet_MINSIZE - 1;
    // 初始化的时候,setentry 数组显然是 smalltable
    // 所以让 table 指向 smalltable 数组
    so->table = so->smalltable;
    // 初始 hash 值为 -1
    so->hash = -1;
    // finger为0
    so->finger = 0;
    // 弱引用列表为NULL
    so->weakreflist = NULL;
    //以上只是初始化,如果可迭代对象不为 NULL
    //那么把元素依次设置到集合中
    if (iterable != NULL) {
    //该过程是通过 set_update_internal 函数实现的
    //该函数内部会遍历 iterable,将迭代出的元素依次添加到集合里面
        if (set_update_internal(so, iterable)) {
            Py_DECREF(so);
            return NULL;
        }
    }
    //返回初始化完成的set
    return (PyObject *)so;
}

整个过程没什么难度,非常好理解。

小结

以上就是集合相关的内容,它的效率也是非常高的,能够以O(1)的复杂度去查找某个元素。最关键的是,它用起来也特别的方便。

此外 Python 里面还有一个 frozenset,也就是不可变的集合。但 frozenset 对象和 set 对象都是同一个结构体,只有 PySetObject,没有 PyFrozenSetObject。

我们在看 PySetObject的时候,发现该对象里面也有个 hash 成员,如果是不可变集合,那么 hash 值是不为 -1 的,因为它不可以添加、删除元素,是不可变对象。

加载全部内容

相关教程
猜你喜欢
用户评论