亲宝软件园·资讯

展开

Flink作业Task运行源码解析

xiangel 人气:0

引言

上一篇我们分析了Flink部署集群的过程和作业提交的方式,本篇我们来分析下,具体作业是如何被调度和计算的。具体分为2个部分来介绍

概览

首先我们来了解下整体的框架 JobMaster: 计算框架的主节点,负责运行单个JobGraph,包括任务的调度,资源申请和TaskManager的管理等。 TaskExecutor: 负责多个Task的具体执行 Dispatcher接收到submitJob的请求后,会生成一个JobMaster实例(具体为Dispatcher创建JobManagerRunner,JobManagerRunner创建JobMaster),下面来具体介绍下JobMaster和TaskExecutor的内部信息

调度框架

JobMaster

    private final SchedulerNG schedulerNG;
    private final ShuffleMaster<?> shuffleMaster;
    private final SlotPoolService slotPoolService;
    private final LeaderRetrievalService resourceManagerLeaderRetriever;
    private final BlobWriter blobWriter;
    private final JobMasterPartitionTracker partitionTracker;
    private HeartbeatManager<TaskExecutorToJobManagerHeartbeatPayload, AllocatedSlotReport>
            taskManagerHeartbeatManager;
    private HeartbeatManager<Void, Void> resourceManagerHeartbeatManager;

JobMaster作为整个任务调度计算的主节点,需要和一些外部角色进行交互,具体的如下:

ScheduleNG

ScheduleNG实际负责job调度处理,包括生成ExecutionGraph,作业的调度执行,任务出错处理等。其实现类为DefaultScheduler

TaskExecutor

实际任务运行的节点,该类负责多个任务的运行,首先我们看看其实现了TaskExecutorGateway接口,TaskExecutorGateway定义了各类可以调用的功能接口,具体内容见下表

分类方法名说明
Task操作相关SubmitTask向TaskExecutor提交任务
Task操作相关cancelTask取消指定的任务
Task操作相关sendOperatorEventToTask发送算子事件给Task
Slot操作相关requestSlot给指定的Job分配指定的slot
Slot操作相关freeSlot释放对应的slot
Slot操作相关freeInactiveSlots释放指定Job的未使用的slot
Partition操作相关updatePartitions更新分区信息
Partition操作相关releaseOrPromotePartitions批量释放或保留分区
Partition操作相关releaseClusterPartitions释放属于给定datasets的所有集群分区数据
checkpoint操作相关triggerCheckpoint触发指定任务的checkpoint处理
checkpoint操作相关confirmCheckpoint确认指定任务的checkpoint
checkpoint操作相关abortCheckpoint终止给定任务的checkpoint

Task

一个Task负责TaskManager上一个subtask的一次执行,Task对Flink Operator进行包装然后运行,并提供需要的各类服务,如消费输入数据,生产数据以及和JobManager通讯。Task实现了Runnable接口,即通过一个单独的线程来运行,而其中的Flink Operator部分封装在实现了TaskInvokable接口的类中,实现类主要为SourceStreamTask和OneInputStreamTask。下面分别详细介绍下这几个类

计算框架

计算框架这节主要来了解数据是如何在Flink中如何处理和流转的。这里我们主要回答以下几个问题:

public class StreamMap<IN, OUT> extends AbstractUdfStreamOperator<OUT, MapFunction<IN, OUT>>
        implements OneInputStreamOperator<IN, OUT> {
    private static final long serialVersionUID = 1L;
    public StreamMap(MapFunction<IN, OUT> mapper) {
        super(mapper);
        chainingStrategy = ChainingStrategy.ALWAYS;
    }
    @Override
    public void processElement(StreamRecord<IN> element) throws Exception {
        output.collect(element.replace(userFunction.map(element.getValue())));
    }
}

这里StreamMap实现了Input接口,其中在实现的processElement()方法中实现了具体的对具体数据的操作处理(Operator),并将结果通过Output接口的collect()方法发射出去。我们先看看这2个接口定义的方法

基本上2边是一一对应的关系,Input负责处理Element\Watermark\WatermarkStatus\LatencyMarker,而Output负责emit这些。这里Input是处理一个输入的,如果是2个输入那对应的就是TwoInputStreamOperator

算子计算处理

对于Chain的操作,是通过Output接口的实现类ChainingOutput.java

    // ChainingOutput.java
    @Override
    public void collect(StreamRecord<T> record) {
        pushToOperator(record);
    }
    protected <X> void pushToOperator(StreamRecord<X> record) {
        try {
            ...
            input.setKeyContextElement(castRecord);
            input.processElement(castRecord);
        } catch (Exception e) {
            throw new ExceptionInChainedOperatorException(e);
        }

这里可以看到在output.collect()方法中把数据再推送到了算子,然后算子(input)继续执行processElement()这样来实现了在当前线程内的pipeline处理,

总结

本篇我们介绍了Flink是如何来执行相应的算子来实现计算的,主要介绍了TaskExecutor运行的Task实现,以及chain算子是如何串行来运行的。对于算子之间的数据交互这块我们后面一篇来单独介绍。

加载全部内容

相关教程
猜你喜欢
用户评论