亲宝软件园·资讯

展开

C++定时器

今天也要写bug、 人气:0

定时器

有些时候我们需要延迟执行一些功能,比如每10s进行一次数据采集。或者告知用户技能冷却有多少时间,如果我们将执行这些功能的任务交给主线程,就会造成主线程的阻塞。因此我们可以选择一个创建一个子线程,让其检测定时器中的任务,当有任务的时间到了的时候,就去执行这个任务。

最小堆实现定时器

定时器可以由很多种数据结构实现,比如最小堆、红黑树、跳表、甚至数组都可以,其本质都是拿到最小时间的任务,然后取出该任务并执行。
综合实现难度和效率来看,最小堆是最容易实现定时器的数据结构。

最小堆主要有以下接口:

#pragma once

#include <vector>
#include <map>
using namespace std;
typedef void (*TimerHandler)(struct TimerNode *node);
//获取系统时间,单位是毫秒
static uint32_t current_time()
{
    uint32_t t;
    struct timespec ti;
    clock_gettime(CLOCK_MONOTONIC, &ti);
    t = (uint32_t)ti.tv_sec * 1000;
    t += ti.tv_nsec / 1000000;
    return t;
}
struct TimerNode
{
    //该任务在最小堆中的下标位置
    int idx = 0;
    //该任务是第几号任务
    int id = 0;
    //几毫秒后执行该任务
    unsigned int expire = 0;
    //回调函数
    TimerHandler cb = NULL;
};
class MinHeapTimer
{
public:
    MinHeapTimer()
    {
        _heap.clear();
        _map.clear();
    }
    int Count();
    //加入任务,expire为该任务的失效时间,expire过后就要执行回调函数cb
    int AddTimer(uint32_t expire, TimerHandler cb);
    //删除一个任务
    bool DelTimer(int id);
    //获取一个任务
    void ExpireTimer();
private:
    //用于比较两个任务的过期时间
    bool _compare(int lhs, int rhs);
    //向下调整算法,每次删除一个节点就要向下调整
    void _shiftDown(int parent);
    //向上调整算法,每添加一个数都要调用向上调整算法,保证根节点为最小节点
    void _shiftUp(int child);
    //删除的子函数
    void _delNode(TimerNode *node);
    void resign(int pos);
private:
    //数组中存储任务节点
    vector<TimerNode *> _heap;
    //存储值和响应节点的映射关系
    map<int, TimerNode *> _map;
    //任务的个数,注意不是_heap的size
    int _count = 0;
};

具体的实现以及测试为:

#pragma once
#include <vector>
#include <map>
using namespace std;
typedef void (*TimerHandler)(struct TimerNode *node);
//获取系统时间,单位是毫秒
static uint32_t current_time()
{
    uint32_t t;
    struct timespec ti;
    clock_gettime(CLOCK_MONOTONIC, &ti);
    t = (uint32_t)ti.tv_sec * 1000;
    t += ti.tv_nsec / 1000000;
    return t;
}
struct TimerNode
{
    //该任务在最小堆中的下标位置
    int idx = 0;
    //该任务是第几号任务
    int id = 0;
    unsigned int expire = 0;
    //回调函数
    TimerHandler cb = NULL;
};

class MinHeapTimer
{
public:
    MinHeapTimer()
    {
        _heap.clear();
        _map.clear();
    }
    int Count()
    {
        return ++_count;
    }
    //加入任务,expire为该任务的失效时间,expire过后就要执行回调函数cb
    int AddTimer(uint32_t expire, TimerHandler cb)
    {
        int64_t timeout = current_time() + expire;
        TimerNode *node = new TimerNode;
        int id = Count();
        node->id = id;
        node->expire = timeout;
        node->cb = cb;
        node->idx = (int)_heap.size();
        _heap.push_back(node);
        _shiftUp((int)_heap.size() - 1);
        _map.insert(make_pair(id, node));
        return id;
    }
    //删除一个任务
    bool DelTimer(int id)
    {
        auto iter = _map.find(id);
        if (iter == _map.end())
            return false;
        _delNode(iter->second);
        return true;
    }
    //获取一个任务
    void ExpireTimer()
    {
        if (_heap.empty())
        {
            return;
        }
        //获取当前时间
        uint32_t now = current_time();
        while (!_heap.empty())
        {
            //获取最近的一个任务
            TimerNode *node = _heap.front();
            //当最近一个任务的时间大于当前时间,说明没有任务要执行
            if (now < node->expire)
            {
                break;
            }
            //遍历一下堆,这一步可以不加
            for (int i = 0; i < _heap.size(); i++)
            {
                std::cout << "touch    idx: " << _heap[i]->idx
                          << " id: " << _heap[i]->id << " expire: "
                          << _heap[i]->expire << std::endl;
            }
            //执行最近任务的回调函数
            if (node->cb)
            {
                node->cb(node);
            }
            //执行完就删掉这个任务
            _delNode(node);
        }
    }
private:
    //用于比较两个任务的过期时间
    bool _compare(int lhs, int rhs)
    {
        return _heap[lhs]->expire < _heap[rhs]->expire;
    }
    //向下调整算法,每次删除一个节点就要向下调整
    void _shiftDown(int parent)
    {
        int child = parent * 2 + 1;
        while (child < _heap.size() - 1)
        {
            if (child + 1 < _heap.size() - 1 && !_compare(child, child + 1))
            {
                child++;
            }
            if (!_compare(parent, child))
            {
                std::swap(_heap[parent], _heap[child]);
                _heap[parent]->idx = parent;
                _heap[child]->idx = child;
                parent = child;
                child = parent * 2 + 1;
            }
            else
            {
                break;
            }
        }
    }
    //向上调整算法,每添加一个数都要调用向上调整算法,保证根节点为最小节点
    void _shiftUp(int child)
    {
        int parent = (child - 1) / 2;
        while (child > 0)
        {
            if (!_compare(parent, child))
            {
                std::swap(_heap[parent], _heap[child]);
                _heap[parent]->idx = parent;
                _heap[child]->idx = child;
                child = parent;
                parent = (child - 1) / 2;
            }
            else
            {
                break;
            }
        }
    }
    //删除的子函数
    void _delNode(TimerNode *node)
    {
        int last = (int)_heap.size() - 1;
        int idx = node->idx;
        if (idx != last)
        {
            std::swap(_heap[idx], _heap[last]);
            _heap[idx]->idx = idx;
            resign(idx);
        }
        _heap.pop_back();
        _map.erase(node->id);
        delete node;
    }
    void resign(int pos)
    {
        //向上调整和向下调整只会发生一个
        _shiftDown(pos);
        _shiftUp(pos);
    }
private:
    //数组中存储任务节点
    vector<TimerNode *> _heap;
    //存储值和响应节点的映射关系
    map<int, TimerNode *> _map;
    //任务的个数,注意不是_heap的size
    int _count = 0;
};
#include <time.h>
#include <unistd.h>
#include <iostream>
#include "minheap.h"
void print_hello(TimerNode *te)
{
    std::cout << "hello world time = " << te->idx << "\t" << te->id << "\t" << current_time() << std::endl;
}
int main()
{
    MinHeapTimer mht;
    //一号任务,立刻执行
    mht.AddTimer(0, print_hello);
    //二号任务,一秒后执行
    mht.AddTimer(1000, print_hello);
    mht.AddTimer(7000, print_hello);
    mht.AddTimer(2000, print_hello);
    mht.AddTimer(9000, print_hello);
    mht.AddTimer(10000, print_hello);
    mht.AddTimer(6000, print_hello);
    mht.AddTimer(3000, print_hello);
    while (1)
    {
        mht.ExpireTimer();
        // usleep(10000);
        sleep(1);
    }
    return 0;
}

时间轮

上面的定时器在任务数量很多时,效率会很低,因为我们需要用最小堆来维护这些任务,并且每删除一个任务,都要进行调整。其主要原因是我们不知道其他任务什么时候执行,所以我们只能进行调整,将最近的任务放到堆顶。

如果我们能够向哈希桶那样,将要执行的任务形成链表,挂到要执行的位置,当时间走到那个位置的时候,就执行这些任务,效率岂不是更高?

单层级时间轮

客户端每 5 秒钟发送⼼跳包;服务端若 10 秒内没收到⼼跳数据,则清除连接。

考虑到正常情况下 5 秒钟发送⼀次⼼跳包,10 秒才检测⼀次,如下图到索引为 10 的时候并不能踢掉连接;所以需要每收到⼀次⼼跳包则 used++ ,每检测⼀次 used-- ;当检测到used == 0 则踢掉连接;

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <sys/time.h>
#include <time.h>
#define MAX_CONN ((1 << 16) - 1)
//连接的节点,用来记录心跳包发送的次数
typedef struct conn_node
{
    struct conn_node *next;
    //引用计数的次数,当used==0,相当于自动销毁
    uint8_t used;
    int id;
} conn_node_t;
//用数组记录所有的连接
static conn_node_t nodes[MAX_CONN] = {0};
static uint32_t iter = 0;
//获取一个空的连接节点
conn_node_t *get_node()
{
    iter++;
    while (nodes[iter & MAX_CONN].used > 0)
    {
        iter++;
    }
    return &nodes[iter];
}
//哈希桶的个数
#define TW_SIZE 16
//检测心跳包的延迟时间,由于哈希桶的个数有限,所以心跳包发送时间不能够超过6
#define EXPIRE 10
//取余操作
#define TW_MASK (TW_SIZE - 1)
static uint32_t tick = 0;
//哈希桶
typedef struct link_list
{
    conn_node_t head;
    //一个tail,能够进行快速插入
    conn_node_t *tail;
} link_list_t;
//添加连接
void add_conn(link_list_t *tw, conn_node_t *node, int delay)
{
    //获取对应的哈希桶
    link_list_t *list = &tw[(tick + EXPIRE + delay) & TW_MASK];
    list->tail->next = node;
    list->tail = node;
    node->next = NULL;
    node->used++;
}
//清楚这个哈希桶
void link_clear(link_list_t *list)
{
    list->head.next = NULL;
    list->tail = &(list->head);
}
//检测哈希桶
void check_conn(link_list_t *tw)
{
    int32_t itick = tick;
    tick++;
    //取到对应哈希桶的链表
    link_list_t *list = &tw[itick & TW_MASK];
    //检测哈希桶对应的链表
    conn_node_t *current = list->head.next;
    while (current)
    {
        conn_node_t *temp = current;
        current = current->next;
        temp->used--;

        if (temp->used == 0)
        {
            printf("连接:%d 断开\n", temp->id);
            temp->next = NULL;
            continue;
        }
        printf("这个链接:%d 心跳包还剩:%d个需要检测\n", temp->id, temp->used);
    }
    link_clear(list);
}
//获取时间,单位是s
static time_t current_time()
{
    time_t t;
    struct timespec ti;
    clock_gettime(CLOCK_MONOTONIC, &ti);
    t = (time_t)ti.tv_sec;
    return t;
}
int main()
{
    memset(nodes, 0, MAX_CONN * sizeof(conn_node_t));

    // init link list
    link_list_t tw[TW_SIZE];
    memset(tw, 0, TW_SIZE * sizeof(link_list_t));
    for (int i = 0; i < TW_SIZE; i++)
    {
        link_clear(&tw[i]);
    }
    // 第一个连接对应的心跳包,在0和5时进行发送
    //所以会在10s和15s时进行检测,15s时把该连接断开
    {
        conn_node_t *node = get_node();
        node->id = 10001;
        add_conn(tw, node, 0);
        add_conn(tw, node, 5);
    }
    //第二个连接发送的心跳包,在第10s时进行检测
    {
        conn_node_t *node = get_node();
        node->id = 10002;
        add_conn(tw, node, 0);
    }
    //第二个连接发送的心跳包,在第13s时检测
    {
        conn_node_t *node = get_node();
        node->id = 10003;
        add_conn(tw, node, 3);
    }
    time_t start = current_time();
    while (1)
    {
        time_t now = current_time();
        if (now - start > 0)
        {
            for (int i = 0; i < now - start; i++)
                check_conn(tw);
            start = now;
            printf("在第%d秒时检测,此时机器时间:%d\n", tick, now);
        }
    }
    return 0;
}

上面的时间轮受哈希桶大小和延迟10s收到心跳包的影响,只能在[0,6]秒内发送数据心跳包,如果想要延迟长时间,则需要扩大哈希桶的大小。

如果我们不发送心跳包,而是改成在若干秒后执行一个任务,比如50s后执行任务,但哈希桶大小只有16,我们可以在任务节点中增加一个参数round,用来记录需要走多少遍哈希桶,比如50s,对应到大小为16的哈希桶则round=3,idx=2。
不过这样做,在check_conn取任务时就不能够把整个链表都取出来,而是需要取出round==0的任务。

typedef struct node
{
    struct conn_node *next;
    //需要走多少轮哈希桶,当round==0时,则说明需要执行这个任务
    int round;
    int id;
} node_t;

这样做能解决时间轮刻度范围过大造成的空间浪费,但是却带来了另一个问题:时间轮每次都需要遍历任务列表,耗时增加,当时间轮刻度粒度很小(秒级甚至毫秒级),任务列表又特别长时,这种遍历的办法是不可接受的。

多层级时间轮

参照时钟表盘的运转规律,可以将定时任务根据触发的紧急程度,分布到不同层级的时间轮中;
假设时间精度为 10ms ;在第 1 层级每 10ms 移动⼀格;每移动⼀格执⾏该格⼦当中所有的定时任务;
当第 1 层指针从 255 格开始移动,此时层级 2 移动⼀格;层级 2 移动⼀格的⾏为定义为,将该格当中的定时任务重新映射到层级 1 当中;同理,层级 2 当中从 63 格开始移动,层级 3 格⼦中的定时任务重新映射到层级 2 ; 以此类推层级 4 往层级 3 映射,层级 5 往层级 4 映射。
只有任务在第一层时才会被执行,其他层都是将任务重新映射到上一层。

timewheel.h:

#pragma once

#include <stdint.h>
#define TIME_NEAR_SHIFT 8
#define TIME_NEAR (1 << TIME_NEAR_SHIFT)
#define TIME_LEVEL_SHIFT 6
#define TIME_LEVEL (1 << TIME_LEVEL_SHIFT)
#define TIME_NEAR_MASK (TIME_NEAR - 1)
#define TIME_LEVEL_MASK (TIME_LEVEL - 1)
typedef struct timer_node timer_node_t;
typedef void (*handler_pt)(struct timer_node *node);
struct timer_node
{
	struct timer_node *next;
	uint32_t expire;	 //时间
	handler_pt callback; //回调函数
	uint8_t cancel;		 //是否删除
	int id;				 // 此时携带参数
};
timer_node_t *add_timer(int time, handler_pt func, int threadid);
void expire_timer(void);
void del_timer(timer_node_t *node);
void init_timer(void);
void clear_timer();

spinlock.h:

#pragma once
struct spinlock
{
	int lock;
};
void spinlock_init(struct spinlock *lock)
{
	lock->lock = 0;
}
void spinlock_lock(struct spinlock *lock)
{
	while (__sync_lock_test_and_set(&lock->lock, 1))
	{
	}
}
int spinlock_trylock(struct spinlock *lock)
{
	return __sync_lock_test_and_set(&lock->lock, 1) == 0;
}
void spinlock_unlock(struct spinlock *lock)
{
	__sync_lock_release(&lock->lock);
}
void spinlock_destroy(struct spinlock *lock)
{
	(void)lock;
}

timewheel.cpp:

#include "spinlock.h"
#include "timewheel.h"
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <time.h>
typedef struct link_list
{
	timer_node_t head;
	timer_node_t *tail;
} link_list_t;

//多级时间轮
typedef struct timer
{
	//第一级
	link_list_t near[TIME_NEAR];
	// 2-4级
	link_list_t t[4][TIME_LEVEL];
	struct spinlock lock;
	uint32_t time;
	uint64_t current;
	uint64_t current_point;
} s_timer_t;
static s_timer_t *TI = NULL;
timer_node_t *link_clear(link_list_t *list)
{
	timer_node_t *ret = list->head.next;
	list->head.next = 0;
	list->tail = &(list->head);

	return ret;
}
//链接一个节点
void link(link_list_t *list, timer_node_t *node)
{
	list->tail->next = node;
	list->tail = node;
	node->next = 0;
}
void add_node(s_timer_t *T, timer_node_t *node)
{
	uint32_t time = node->expire;
	uint32_t current_time = T->time;
	uint32_t msec = time - current_time;
	//根据时间
	if (msec < TIME_NEAR)
	{ //[0, 0x100)
		link(&T->near[time & TIME_NEAR_MASK], node);
	}
	else if (msec < (1 << (TIME_NEAR_SHIFT + TIME_LEVEL_SHIFT)))
	{ //[0x100, 0x4000)
		link(&T->t[0][((time >> TIME_NEAR_SHIFT) & TIME_LEVEL_MASK)], node);
	}
	else if (msec < (1 << (TIME_NEAR_SHIFT + 2 * TIME_LEVEL_SHIFT)))
	{ //[0x4000, 0x100000)
		link(&T->t[1][((time >> (TIME_NEAR_SHIFT + TIME_LEVEL_SHIFT)) & TIME_LEVEL_MASK)], node);
	}
	else if (msec < (1 << (TIME_NEAR_SHIFT + 3 * TIME_LEVEL_SHIFT)))
	{ //[0x100000, 0x4000000)
		link(&T->t[2][((time >> (TIME_NEAR_SHIFT + 2 * TIME_LEVEL_SHIFT)) & TIME_LEVEL_MASK)], node);
	}
	else
	{ //[0x4000000, 0xffffffff]
		link(&T->t[3][((time >> (TIME_NEAR_SHIFT + 3 * TIME_LEVEL_SHIFT)) & TIME_LEVEL_MASK)], node);
	}
}
//增加事件
timer_node_t *add_timer(int time, handler_pt func, int threadid)
{
	timer_node_t *node = (timer_node_t *)malloc(sizeof(*node));
	spinlock_lock(&TI->lock);
	node->expire = time + TI->time; // 每10ms加1 0
	node->callback = func;
	node->id = threadid;
	if (time <= 0)
	{
		node->callback(node);
		free(node);
		spinlock_unlock(&TI->lock);
		return NULL;
	}
	add_node(TI, node);
	spinlock_unlock(&TI->lock);
	return node;
}
void move_list(s_timer_t *T, int level, int idx)
{
	timer_node_t *current = link_clear(&T->t[level][idx]);
	while (current)
	{
		timer_node_t *temp = current->next;
		add_node(T, current);
		current = temp;
	}
}
void timer_shift(s_timer_t *T)
{
	int mask = TIME_NEAR;
	uint32_t ct = ++T->time;
	if (ct == 0)
	{
		move_list(T, 3, 0);
	}
	else
	{
		// ct / 256
		uint32_t time = ct >> TIME_NEAR_SHIFT;
		int i = 0;
		// ct % 256 == 0
		while ((ct & (mask - 1)) == 0)
		{
			int idx = time & TIME_LEVEL_MASK;
			if (idx != 0)
			{
				move_list(T, i, idx);
				break;
			}
			mask <<= TIME_LEVEL_SHIFT;
			time >>= TIME_LEVEL_SHIFT;
			++i;
		}
	}
}
void dispatch_list(timer_node_t *current)
{
	do
	{
		timer_node_t *temp = current;
		current = current->next;
		if (temp->cancel == 0)
			temp->callback(temp);
		free(temp);
	} while (current);
}
void timer_execute(s_timer_t *T)
{
	int idx = T->time & TIME_NEAR_MASK;

	while (T->near[idx].head.next)
	{
		timer_node_t *current = link_clear(&T->near[idx]);
		spinlock_unlock(&T->lock);
		dispatch_list(current);
		spinlock_lock(&T->lock);
	}
}
void timer_update(s_timer_t *T)
{
	spinlock_lock(&T->lock);
	timer_execute(T);
	timer_shift(T);
	timer_execute(T);
	spinlock_unlock(&T->lock);
}

void del_timer(timer_node_t *node)
{
	node->cancel = 1;
}
s_timer_t *timer_create_timer()
{
	s_timer_t *r = (s_timer_t *)malloc(sizeof(s_timer_t));
	memset(r, 0, sizeof(*r));
	int i, j;
	for (i = 0; i < TIME_NEAR; i++)
	{
		link_clear(&r->near[i]);
	}
	for (i = 0; i < 4; i++)
	{
		for (j = 0; j < TIME_LEVEL; j++)
		{
			link_clear(&r->t[i][j]);
		}
	}
	spinlock_init(&r->lock);
	r->current = 0;
	return r;
}
uint64_t gettime()
{
	uint64_t t;
	struct timespec ti;
	clock_gettime(CLOCK_MONOTONIC, &ti);
	t = (uint64_t)ti.tv_sec * 100;
	t += ti.tv_nsec / 10000000;

	return t;
}
void expire_timer(void)
{
	uint64_t cp = gettime();
	if (cp != TI->current_point)
	{
		uint32_t diff = (uint32_t)(cp - TI->current_point);
		TI->current_point = cp;
		int i;
		for (i = 0; i < diff; i++)
		{
			timer_update(TI);
		}
	}
}
void init_timer(void)
{
	TI = timer_create_timer();
	TI->current_point = gettime();
}
void clear_timer()
{
	int i, j;
	for (i = 0; i < TIME_NEAR; i++)
	{
		link_list_t *list = &TI->near[i];
		timer_node_t *current = list->head.next;
		while (current)
		{
			timer_node_t *temp = current;
			current = current->next;
			free(temp);
		}
		link_clear(&TI->near[i]);
	}
	for (i = 0; i < 4; i++)
	{
		for (j = 0; j < TIME_LEVEL; j++)
		{
			link_list_t *list = &TI->t[i][j];
			timer_node_t *current = list->head.next;
			while (current)
			{
				timer_node_t *temp = current;
				current = current->next;
				free(temp);
			}
			link_clear(&TI->t[i][j]);
		}
	}
}

tw-timer.cpp:

#include <stdio.h>
#include <unistd.h>

#include <pthread.h>
#include <time.h>
#include <stdlib.h>
#include "timewheel.h"
struct context
{
    int quit;
    int thread;
};
struct thread_param
{
    struct context *ctx;
    int id;
};
static struct context ctx = {0};
void do_timer(timer_node_t *node)
{
    printf("timer expired:%d - thread-id:%d\n", node->expire, node->id);
}
void *thread_worker(void *p)
{
    struct thread_param *tp = (struct thread_param *)p;
    int id = tp->id;
    struct context *ctx = tp->ctx;
    while (!ctx->quit)
    {
        int expire = rand() % 200;
        add_timer(expire, do_timer, id);
        usleep(expire * (10 - 1) * 1000);
    }
    printf("thread_worker:%d exit!\n", id);
    return NULL;
}
void do_quit(timer_node_t *node)
{
    ctx.quit = 1;
}
int main()
{
    srand(time(NULL));
    ctx.thread = 8;
    pthread_t pid[ctx.thread];

    init_timer();
    add_timer(6000, do_quit, 100);
    struct thread_param task_thread_p[ctx.thread];
    int i;
    for (i = 0; i < ctx.thread; i++)
    {
        task_thread_p[i].id = i;
        task_thread_p[i].ctx = &ctx;
        if (pthread_create(&pid[i], NULL, thread_worker, &task_thread_p[i]))
        {
            fprintf(stderr, "create thread failed\n");
            exit(1);
        }
    }
    while (!ctx.quit)
    {
        expire_timer();
        usleep(2500);
    }
    clear_timer();
    for (i = 0; i < ctx.thread; i++)
    {
        pthread_join(pid[i], NULL);
    }
    printf("all thread is closed\n");
    return 0;
}

加载全部内容

相关教程
猜你喜欢
用户评论