Python Hough圆变换
aRossoneri 人气:0Hough圆变换的原理很多博客都已经说得非常清楚了,但是手动实现的比较少,所以本文直接贴上手动实现的代码。
这里使用的图片是一堆硬币:
首先利用通过计算梯度来寻找边缘,代码如下:
def detect_edges(image): h = image.shape[0] w = image.shape[1] sobeling = np.zeros((h, w), np.float64) sobelx = [[-3, 0, 3], [-10, 0, 10], [-3, 0, 3]] sobelx = np.array(sobelx) sobely = [[-3, -10, -3], [0, 0, 0], [3, 10, 3]] sobely = np.array(sobely) gx = 0 gy = 0 testi = 0 for i in range(1, h - 1): for j in range(1, w - 1): edgex = 0 edgey = 0 for k in range(-1, 2): for l in range(-1, 2): edgex += image[k + i, l + j] * sobelx[1 + k, 1 + l] edgey += image[k + i, l + j] * sobely[1 + k, 1 + l] gx = abs(edgex) gy = abs(edgey) sobeling[i, j] = gx + gy # if you want to imshow ,run codes below first # if sobeling[i,j]>255: # sobeling[i, j]=255 # sobeling[i, j] = sobeling[i,j]/255 return sobeling
需要注意的是,这里使用的kernel内的数值比较大,所以得到了结果图中的某些位置的数值超过255,但并不影响显示,但如果想通过cv2.imshow来显示,就需要将超过255的地方设为255即可(已经在代码中用注释标出),结果如下:
接下来就是要进行Hough圆变换,先看代码:
def hough_circles(edge_image, edge_thresh, radius_values): h = edge_image.shape[0] w = edge_image.shape[1] # print(h,w) edgimg = np.zeros((h, w), np.int64) for i in range(h): for j in range(w): if edge_image[i][j] > edge_thresh: edgimg[i][j] = 255 else: edgimg[i][j] = 0 accum_array = np.zeros((len(radius_values), h, w)) # return edgimg , [] for i in range(h): print('Hough Transform进度:', i, '/', h) for j in range(w): if edgimg[i][j] != 0: for r in range(len(radius_values)): rr = radius_values[r] hdown = max(0, i - rr) for a in range(hdown, i): b = round(j+math.sqrt(rr*rr - (a - i) * (a - i))) if b>=0 and b<=w-1: accum_array[r][a][b] += 1 if 2 * i - a >= 0 and 2 * i - a <= h - 1: accum_array[r][2 * i - a][b] += 1 if 2 * j - b >= 0 and 2 * j - b <= w - 1: accum_array[r][a][2 * j - b] += 1 if 2 * i - a >= 0 and 2 * i - a <= h - 1 and 2 * j - b >= 0 and 2 * j - b <= w - 1: accum_array[r][2 * i - a][2 * j - b] += 1 return edgimg, accum_array
其中输入是我们之前得到的边缘图,以及确定强边缘的阈值,以及一个包含着我们估计的半径的数组;返回值是强边缘图以及参数域矩阵。代码中首先遍历边缘图,通过阈值留下那些较强的位置,这里的阈值需要自己根据自己的输入图进行调节。接着就是进行Hough变换,这里的候选半径集合需要根据自己的输入图进行调节。在绘制参数域的过程中,只遍历了所需正方形区域(大小为 r*r)的 1/4,这是因为在坐出参数域上的一个点之后,由于圆的对称性,就可以找到与之对称的另外三个点,无需额外进行遍历。
最后一步就是从参数域矩阵中提取出结果圆,代码如下,其中筛选阈值需要根据你的输入图像自己调节:
def find_circles(image, accum_array, radius_values, hough_thresh): returnlist = [] hlist = [] wlist = [] rlist = [] returnimg = deepcopy(image) for r in range(accum_array.shape[0]): print('Find Circles 进度:', r, '/', accum_array.shape[0]) for h in range(accum_array.shape[1]): for w in range(accum_array.shape[2]): if accum_array[r][h][w] > hough_thresh: tmp = 0 for i in range(len(hlist)): if abs(w-wlist[i])<10 and abs(h-hlist[i])<10: tmp = 1 break if tmp == 0: #print(accum_array[r][h][w]) rr = radius_values[r] flag = '(h,w,r)is:(' + str(h) + ',' + str(w) + ',' + str(rr) + ')' returnlist.append(flag) hlist.append(h) wlist.append(w) rlist.append(rr) print('圆的数量:', len(hlist)) for i in range(len(hlist)): center = (wlist[i], hlist[i]) rr = rlist[i] color = (0, 255, 0) thickness = 2 cv2.circle(returnimg, center, rr, color, thickness) return returnlist, returnimg
注意一下在这一步中需要将那些圆心相近的圆剔除掉,只保留一个结果。
接着是main函数,这没啥好说的:
def main(argv): img_name = argv[0] img = cv2.imread('data/' + img_name + '.png', cv2.IMREAD_COLOR) # print(img.shape[0], img.shape[1]) gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # print(gray_image.shape[0], gray_image.shape[1]) img1 = detect_edges(gray_image) cv2.imwrite('output/' + img_name + "_after_find_detect.png", img1) thresh = 1500 # 需要注意的是,在img1中有些地方的像素值是高于255的,这是由于之前的kernel内的数更大 # 但这并不影响图像的显示 # 因此这里的thresh要大于255 radius_values = [] for i in range(10): radius_values.append(20 + i) edgeimg, accum_array = hough_circles(img1, thresh, radius_values) cv2.imwrite('output/' + img_name + "_after_binary.png", edgeimg) # Findcircle hough_thresh = 70 resultlist, resultimg = find_circles(img, accum_array, radius_values, hough_thresh) print(resultlist) cv2.imwrite('output/' + img_name + "_circles.png", resultimg) if __name__ == '__main__': sys.argv.append("coins") main(sys.argv[1:]) # TODO
下面是我的运行结果:
加载全部内容