亲宝软件园·资讯

展开

mysql的数据压缩性能对比 mysql的数据压缩性能对比详情

IT技术博客 人气:0
想了解mysql的数据压缩性能对比详情的相关内容吗,IT技术博客在本文为您仔细讲解mysql的数据压缩性能对比的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:mysql数据压缩性能对比,mysql数据压缩性能,下面大家一起来学习吧。

数据魔方需要的数据,一旦写入就很少或者根本不会更新。这种数据非常适合压缩以降低磁盘占用。MySQL本身提供了两种压缩方式――archive引擎以及针对MyISAM引擎的myisampack方式。今天对这两种方式分别进行了测试,对比了二者在磁盘占用以及查询性能方面各自的优劣。至于为什么做这个,你们应该懂的,我后文还会介绍。且看正文:

1. 测试环境

1.1 软硬件

一台 64位 2.6.18-92 内核Linux开发机,4G内存,4个2800Mhz Dual-Core AMD Opteron(tm) Processor 2220 CPU。

MySQL放在一块7200转SAT硬盘,未做raid

MySQL未做任何优化, 关闭了query cache ,目的在于避免query cache对测试结果造成干扰。

1.2 表结构

2424753条记录,生产环境某一个分片的实际数据;

分别建立了(partition_by1,idx_rank) 和 (partition_by1,chg_idx)的联合索引,其中 partition_by1为32长度的varchar类型 ,用于检索;其余两个字段均为浮点数,多用于排序;

autokid作为子增列,充当PRIMARY KEY,仅作为数据装载时原子性保证用,无实际意义。

2. 测试目的

2.1 压缩空间对比

压缩率越大,占用的磁盘空间越小,直接降低数据的存储成本;

2.2 查询性能对比

压缩后查询性能不应该有显著降低。Archive是不支持索引的,因此性能降低是必然的,那么我们也应该心里有个谱,到底降低了多少,能不能接受。

3. 测试工具

3.1 mysqlslap

官方的工具当然是不二之选。关于mysqlslap的介绍请参考 官方文档 。

3.2 测试query

截取生产环境访问topranks_v3表的实际SQL共9973条,从中抽取访问量较大的7条,并发50,重复执行10次。命令如下:

./mysqlslap --defaults-file=../etc/my.cnf -u**** -p**** -c50 -i10 -q ../t.sql --debug-info

4.测试结论

比较项 磁盘空间 耗时(秒) CPU Idle LOAD 并发
基准表(MyISAM) 403956004 2.308 30 15 50
ARCHIVE 75630745 >300 75 4 1
PACK 99302109 2.596 30 22 50

根据上面的表格给出的测试数据,我们简单得出以下结论:

那么,我们似乎可以得出结论,针对需要在线查询的表,ARCHIVE引擎基本上可以不考虑了。

为什么这个测试过程中ARCHIVE引擎如此地慢呢?

我们知道,mysql提供archive这种存储引擎是为了降低磁盘开销,但还有一个前提,那就是被归档的数据不需要或者很少被在线查询,偶尔的查询慢一些也是没关系的。鉴于上述原因,archive表是不允许建立自增列之外的索引的。

有了这个共识,我们拿一条测试SQL来分析一下不用索引前后的查询性能差别为什么这么大。

在我们的测试SQL中有这么一条:

SELECT c1,c2,...,cn FROM  mysqlslap.rpt_topranks_v3
WHERE ... AND partition_by1 = '50008090'
ORDER BY added_quantity3 DESC
LIMIT 500


我们前边说过,测试的这个表在partition_by1这个字段上建立了索引,那么,我们初步判断在基准表和myisampack表上,这个查询应该用到了partition_by1的索引; EXPLAIN 一下:

mysql> EXPLAIN
    -> SELECT ... FROM  mysqlslap.rpt_topranks_v3
    -> WHERE ... AND partition_by1 = '50008090'
    -> ORDER BY added_quantity3 DESC
    -> LIMIT 500\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        TABLE: rpt_topranks_v3
         type: ref
possible_keys: idx_toprank_pid,idx_toprank_chg
          KEY: idx_toprank_pid
      key_len: 99
          ref: const
         rows: 2477
        Extra: USING WHERE; USING filesort
1 row IN SET (0.00 sec)

正如我们所料,这个查询用到了建立在partition_by1这个字段上的索引,匹配的目标行数为2477,然后还有一个在added_quantity3字段上的排序。由于added_quantity3没有索引,所以用到了filesort

我们再看一下这条SQL在归档表上的 EXPLAIN 结果:

mysql> EXPLAIN
    -> SELECT ... FROM  mysqlslap.rpt_topranks_v3_<strong>archive</strong>
    -> WHERE ... AND partition_by1 = '50008090'
    -> ORDER BY added_quantity3 DESC
    -> LIMIT 500\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        TABLE: rpt_topranks_v3_archive
         type: ALL
possible_keys: NULL
          KEY: NULL
      key_len: NULL
          ref: NULL
         rows: 2424753
        Extra: USING WHERE; USING filesort
1 row IN SET (0.00 sec)


EXPLAIN 说:“我没有索引可用,所以只能全表扫描2424753行记录,然后再来个filesort。”你要追求性能,那显然是委屈MySQL了。

加载全部内容

相关教程
猜你喜欢
用户评论