亲宝软件园·资讯

展开

R绘图输出希腊字符上下标及数学公式 R语言绘图时输出希腊字符上下标及数学公式实现方法

Kanny广小隶 人气:0
想了解R语言绘图时输出希腊字符上下标及数学公式实现方法的相关内容吗,Kanny广小隶在本文为您仔细讲解R绘图输出希腊字符上下标及数学公式的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:R绘图时输出希腊字符,R绘图输出上下标,R绘图输出数学公式,下面大家一起来学习吧。

通常在我们写论文时,所需要的统计图是非常严谨的,里面的希腊字符与上下脚标都必须要严格书写。因此在使用R绘图时,如何在我们目标图中使用希腊字符、上标、下标及一些数学公式呢?在本博客中我们会进行详细的说明。

后面我们都将以一个最简单的绘图为例,只是将其标题进行修改。

希腊字母

使用希腊字符、上标、下标及数学公式,都需要利用一个函数:expression(),具体使用方式如下:

plot(cars)
title(main = expression(Sigma))

输出:

上下标

expression()中的下标为[],上标为^,空格为~,连接符为*。示例代码如下:

plot(cars)
title(main = expression(Sigma[1]~'a'*'n'*'d'~Sigma^2))

输出:

paste

想达到上面的效果,我们其实可以使用paste()expression()进行组合,不需要上述繁琐的过程,也能够达到我们上述一模一样的输出,并且方便快捷:

plot(cars)
title(main = expression(paste(Sigma[1], ' and ', Sigma^2)))

一个复杂的例子

目标:

代码:

expression(paste((frac(1, m)+frac(1, n))^-1, ABCD[paste(m, ',', n)]))

进阶

在我们想批量产生大量含有不同变量值的标题时,如果遇到变量与公式的混合输出该如何操作,

可参考前文:R语言绘图公式与变量对象混合拼接实现方法

数学公式

最后的数学公式,只需要在expression()中进行相应的符号连接即可

具体要求可参考:Mathematical Annotation in R

鉴于其很不稳定,这里将里面的细节搬运过来。

(下表也可以直接在 R help 中搜索 plotmath 获取。)

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %±% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x %.% y x cdot y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
!x not x
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
x %~% y x is distributed as y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
symbol(x) draw x in symbol font
list(x, y, z) comma-separated list
ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
theta1, phi1, sigma1, omega1 cursive Greek symbols
Upsilon1 capital upsilon with hook
aleph first letter of Hebrew alphabet
infinity infinity symbol
partialdiff partial differential symbol
nabla nabla, gradient symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
underline(x) draw x underlined
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for “0”, but don't draw it
x + over(1, phantom(0)) leave vertical gap for “0” (don't draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain§(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters
group(lfloor, x, rfloor) special delimiters

加载全部内容

相关教程
猜你喜欢
用户评论