Python 实现多任务进程 利用 Python 实现多任务进程
阿拉斯加 人气:0一、进程介绍
进程:正在执行的程序,由程序、数据和进程控制块组成,是正在执行的程序,程序的一次执行过程,是资源调度的基本单位。
程序:没有执行的代码,是一个静态的。
二、线程和进程之间的对比
由图可知:此时电脑有 9 个应用进程,但是一个进程又会对应于多个线程,可以得出结论:
进程:能够完成多任务,一台电脑上可以同时运行多个 QQ
线程:能够完成多任务,一个 QQ 中的多个聊天窗口
根本区别:进程是操作系统资源分配的基本单位,而线程是任务调度和执行的基本单位.
三、使用多进程的优势
1、拥有独立GIL
首先由于进程中 GIL
的存在,Python
中的多线程并不能很好地发挥多核优势,一个进程中的多个线程,在同 一时刻只能有一个线程运行。而对于多进程来说,每个进程都有属于自己的 GIL
,所以,在多核处理器下,多进程的运行是不会受 GIL的影响的。因此,多进 程能更好地发挥多核的优势。
2、效率高
当然,对于爬虫这种 IO
密集型任务来说,多线程和多进程影响差别并不大。对于计算密集型任务来说,Python
的多进程相比多线 程,其多核运行效率会有成倍的提升。
四、Python 实现多进程
我们先用一个实例来感受一下:
1、使用 process 类
import multiprocessing def process(index): print(f'Process: {index}') if __name__ == '__main__': for i in range(5): p = multiprocessing.Process(target=process, args=(i,)) p.start()
这是一个实现多进程最基础的方式:通过创建 Process
来新建一个子进程,其中 target
参数传入方法名,args
是方法的参数,是以 元组的形式传入,其和被调用的方法 process
的参数是一一对应的。
注意:这里 args
必须要是一个元组,如果只有一个参数,那也要在元组第一个元素后面加一个逗号,如果没有逗号则 和单个元素本身没有区别,无法构成元组,导致参数传递出现问题。创建完进程之后,我们通过调用 start
方法即可启动进程了。
运行结果如下:
Process: 0
Process: 1
Process: 2
Process: 3
Process: 4
可以看到,我们运行了 5 个子进程,每个进程都调用了 process
方法。process
方法的 index
参数通过 Process
的 args
传入,分别是 0~4 这 5 个序号,最后打印出来,5 个子进程运行结束。
2、继承 process 类
from multiprocessing import Process import time class MyProcess(Process): def __init__(self,loop): Process.__init__(self) self.loop = loop def run(self): for count in range(self.loop): time.sleep(1) print(f'Pid:{self.pid} LoopCount: {count}') if __name__ == '__main__': for i in range(2,5): p = MyProcess(i) p.start()
我们首先声明了一个构造方法,这个方法接收一个 loop
参数,代表循环次数,并将其设置为全局变量。在 run
方法中,又使用这 个 loop
变量循环了 loop 次并打印了当前的进程号和循环次数。
在调用时,我们用 range
方法得到了 2、3、4 三个数字,并把它们分别初始化了 MyProcess
进程,然后调用 start
方法将进程启动起 来。
注意:这里进程的执行逻辑需要在 run
方法中实现,启动进程需要调用 start
方法,调用之后 run
方法便会执行。
运行结果如下:
Pid:12976 LoopCount: 0
Pid:15012 LoopCount: 0
Pid:11976 LoopCount: 0
Pid:12976 LoopCount: 1
Pid:15012 LoopCount: 1
Pid:11976 LoopCount: 1
Pid:15012 LoopCount: 2
Pid:11976 LoopCount: 2
Pid:11976 LoopCount: 3
注意:这里的进程 pid 代表进程号,不同机器、不同时刻运行结果可能不同。
五、进程之间的通信
1、Queue-队列 先进先出
from multiprocessing import Queue import multiprocessing def download(p): # 下载数据 lst = [11,22,33,44] for item in lst: p.put(item) print('数据已经下载成功....') def savedata(p): lst = [] while True: data = p.get() lst.append(data) if p.empty(): break print(lst) def main(): p1 = Queue() t1 = multiprocessing.Process(target=download,args=(p1,)) t2 = multiprocessing.Process(target=savedata,args=(p1,)) t1.start() t2.start() if __name__ == '__main__': main() 数据已经下载成功.... [11, 22, 33, 44]
2、共享全局变量不适用于多进程编程
import multiprocessing a = 1 def demo1(): global a a += 1 def demo2(): print(a) def main(): t1 = multiprocessing.Process(target=demo1) t2 = multiprocessing.Process(target=demo2) t1.start() t2.start() if __name__ == '__main__': main()
运行结果:
1
有结果可知:全局变量不共享;
六、进程池之间的通信
1、进程池引入
当需要创建的子进程数量不多时,可以直接利用 multiprocessing
中的 Process
动态生成多个进程,但是如果是上百甚至上千个目标,手动的去创建的进程的工作量巨大,此时就可以用到 multiprocessing
模块提供的 Pool
方法。
from multiprocessing import Pool import os,time,random def worker(a): t_start = time.time() print('%s开始执行,进程号为%d'%(a,os.getpid())) time.sleep(random.random()*2) t_stop = time.time() print(a,"执行完成,耗时%0.2f"%(t_stop-t_start)) if __name__ == '__main__': po = Pool(3) # 定义一个进程池 for i in range(0,10): po.apply_async(worker,(i,)) # 向进程池中添加worker的任务 print("--start--") po.close() po.join() print("--end--")
运行结果:
--start--
0开始执行,进程号为6664
1开始执行,进程号为4772
2开始执行,进程号为13256
0 执行完成,耗时0.18
3开始执行,进程号为6664
2 执行完成,耗时0.16
4开始执行,进程号为13256
1 执行完成,耗时0.67
5开始执行,进程号为4772
4 执行完成,耗时0.87
6开始执行,进程号为13256
3 执行完成,耗时1.59
7开始执行,进程号为6664
5 执行完成,耗时1.15
8开始执行,进程号为4772
7 执行完成,耗时0.40
9开始执行,进程号为6664
6 执行完成,耗时1.80
8 执行完成,耗时1.49
9 执行完成,耗时1.36
--end--
一个进程池只能容纳 3 个进程,执行完成才能添加新的任务,在不断的打开与释放的过程中循环往复。
七、案例:文件批量复制
操作思路:
- 获取要复制文件夹的名字
- 创建一个新的文件夹
- 获取文件夹里面所有待复制的文件名
- 创建进程池
- 向进程池添加任务
代码如下:
导包
import multiprocessing import os import time
定制文件复制函数
def copy_file(Q,oldfolderName,newfolderName,file_name): # 文件复制,不需要返回 time.sleep(0.5) # print('\r从%s文件夹复制到%s文件夹的%s文件'%(oldfolderName,newfolderName,file_name),end='') old_file = open(oldfolderName + '/' + file_name,'rb') # 待复制文件 content = old_file.read() old_file.close() new_file = open(newfolderName + '/' + file_name,'wb') # 复制出的新文件 new_file.write(content) new_file.close() Q.put(file_name) # 向Q队列中添加文件
定义主函数
def main(): oldfolderName = input('请输入要复制的文件夹名字:') # 步骤1获取要复制文件夹的名字(可以手动创建,也可以通过代码创建,这里我们手动创建) newfolderName = oldfolderName + '复件' # 步骤二 创建一个新的文件夹 if not os.path.exists(newfolderName): os.mkdir(newfolderName) filenames = os.listdir(oldfolderName) # 3.获取文件夹里面所有待复制的文件名 # print(filenames) pool = multiprocessing.Pool(5) # 4.创建进程池 Q = multiprocessing.Manager().Queue() # 创建队列,进行通信 for file_name in filenames: pool.apply_async(copy_file,args=(Q,oldfolderName,newfolderName,file_name)) # 5.向进程池添加任务 po.close() copy_file_num = 0 file_count = len(filenames) # 不知道什么时候完成,所以定义一个死循环 while True: file_name = Q.get() copy_file_num += 1 time.sleep(0.2) print('\r拷贝进度%.2f %%'%(copy_file_num * 100/file_count),end='') # 做一个拷贝进度条 if copy_file_num >= file_count: break
程序运行
if __name__ == '__main__': main()
运行结果如下图所示:
运行前后文件目录结构对比
加载全部内容