亲宝软件园·资讯

展开

Python代码简洁技巧 一些让Python代码简洁的实用技巧总结

Frank Andrade 人气:0
想了解一些让Python代码简洁的实用技巧总结的相关内容吗,Frank Andrade在本文为您仔细讲解Python代码简洁技巧的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:python代码简洁例子,python简单代码,简洁代码之道,下面大家一起来学习吧。

前言

众所周知,编写Python代码在开始时十分容易,但随着你在工具包中添加更多的库,你的脚本可能会有不必要的代码行,变得冗长而混乱。可能短期内能够应付工作,但长期来看,麻烦不小。

在这篇文章中,我将与你分享7个技巧,使你在使用Python进行数据科学时更加简洁。这涵盖了我们日常所做的事情,例如修改Pandas数据框中的值,连接字符串,读取文件等操作!

1. 使用Lambda来修改Pandas数据框中的值

假设我们有以下df数据框:

data = [[1,2,3], [4,5,6], [7,8,9]]
df = pd.DataFrame(data, columns=[0,1,2])
IN[1]: print (df)
OUT[1]:    0  1  2
        0  1  2  3
        1  4  5  6
        2  7  8  9

现在由于某种原因,你需要在第0列的数字上添加01的值。一个常见的方法是定义一个函数来完成这个任务,然后用 apply 函数来修改一列的值。

def add_numbers(x):
    return f'{x}01'
df[0] = df[0].apply(add_numbers)
IN[1]: print (df)
OUT[1]:     0   1   2
        0  101  2   3
        1  401  5   6
        2  701  8   9

这并不复杂,但是在数据框中对每一个改变创建一个函数是不切实际的。这时lambda就派上了用场。

lambda函数类似于普通的Python函数,但它可以不使用名称来定义,这使得它成为一个漂亮的单行代码。之前使用的代码可以用以下方式来减少。

df[0] = df[0].apply(lambda x:f'{x}01')

当你不知道是否可以访问一个系列的属性来修改数据时,Lambda变得非常有用。

例如,列0包含字母,我们想把它们大写。

# 如果你知道.str的存在,你可以这样做
df[0] = df[0].str.title()
# 如果你不知道.str,你仍然可以用lambda大写
df[0] = df[0].apply(lambda x: x.title())

2. 使用f-string来连接字符串

字符串连接是Python中非常常见的操作,它可以用不同的方法来完成。最常见的方法是使用+运算符;然而,这个运算符的一个问题是我们不能在字符串之间添加任何分隔符。

当然,如果你想把 "Hello "和 "World "连接起来,一个典型的变通方法是添加一个空白分隔符(" ")。

print("Hello" + " " + "World")

这就完成了工作,但为了写出更可读的代码,我们可以用一个f-string来代替它。

IN[2]: print(f'{Hello} {World}')
OUT[2]: "Hello World"

在一个基本的例子中,这似乎是不必要的,但是当涉及到连接多个值时(正如你将在提示#3中看到的),f-string将使你免于书写多次+ " " +。我不知道过去有多少次不得不写+运算符,但现在不会了!

其他连接字符串的方法是使用join()方法或format()函数,然而f-string在字符串连接方面做得更好。

3. 用Zip()函数对多个列表进行迭代

你是否曾经想在 Python 中循环遍历一个以上的列表?当你有两个列表时,你可以用 enumerate 来实现。

teams = ['Barcelona', 'Bayern Munich', 'Chelsea']
leagues = ['La Liga', 'Bundesliga', 'Premiere League']
for i, team in enumerate(teams):
    league = leagues[i]
    print(f'{team} plays in {league}')

然而,当你有两个或更多的列表时,这变得不切实际。一个更好的方法是使用zip()函数。zip()函数接收迭代数据,将它们聚集在一个元组中,并返回之。

让我们再增加一个列表,看看zip()的威力!

teams = ['Barcelona', 'Bayern Munich', 'Chelsea']
leagues = ['La Liga', 'Bundesliga', 'Premiere League']
countries = ['Spain', 'Germany', 'UK']
for team, league, country in zip(teams, leagues, countries):
    print(f'{team} plays in {league}. Country: {country}')

上述代码的输出结果为:

Barcelona plays in La Liga. Country: Spain
Bayern Munich plays in Bundesliga. Country: Germany
Chelsea plays in Premiere League. Country: UK

此处你注意到我们在这个例子中使用了f-string吗?代码变得更有可读性,不是吗?

4. 使用列表理解法

清洗和处理数据的一个常见步骤是修改现有的列表。比如,我们有以下需要大写的列表:

words = ['california', 'florida', 'texas']

将words列表的每个元素大写的典型方法是创建一个新的大写列表,执行一次 for 循环,使用.title(),然后将每个修改的值附加到新的列表中。

capitalized = []
for word in words:
    capitalized.append(word.title())

然而,Pythonic的方法是使用列表理解来做到这一点。列表理解有一种优雅的方法来制作列表。

你可以用一行代码重写上面的for循环:

capitalized = [word.title() for word in words]

由此我们可以跳过第一个例子中的一些步骤,结果是一样的。

5. 对文件对象使用with语句

当在一个项目上工作时,我们经常会对文件进行读写操作。最常见的方法是使用open()函数打开一个文件,它会创建一个我们可以操作的文件对象,然后作为一个习惯的做法,我们应该使用close()关闭该文件对象。

f = open('dataset.txt', 'w')
f.write('new_data')
f.close()

这很容易记住,但有时写了几个小时的代码,我们可能会忘记用f.close()关闭f文件。这时,with语句就派上了用场。with语句将自动关闭文件对象f,形式如下:

with open('dataset.txt', 'w') as f:
    f.write('new_data')

有了这个,我们可以保持代码的简短。

你不需要用它来读取CSV文件,因为你可以用pandas的 pd.read_csv()轻松地读取,但在读取其他类型的文件时,这仍然很有用。例如,从pickle文件中读取数据时经常使用它。

import pickle 
# 从pickle文件中读取数据集
with open(‘test', ‘rb') as input:
    data = pickle.load(input)

6. 停止使用方括号来获取字典项, 利用.get()代替

比如,有以下一个字典:

person = {'name': 'John', 'age': 20}

我们可以通过person[name]和person[age]分别获得姓名和年龄。但是,由于某种原因,我们想获得一个不存在的键,如 "工资",运行person[salary]会引发一个`KeyError'。

这时,get()方法就有用了。如果键在字典中,get()方法返回指定键的值,但是如果没有找到键,Python 将返回None。得益于此,你的代码不会中断。

person = {'name': 'John', 'age': 20}
print('Name: ', person.get('name'))
print('Age: ', person.get('age'))
print('Salary: ', person.get('salary'))

输出结果如下:

Name:  John
Age:  20
Salary:  None

7. 多重赋值

你是否曾想减少用于创建多个变量、列表或字典的代码行数?那么,你可以用多重赋值轻松做到这一点。

# 原始操作
a = 1
b = 2
c = 3
# 替代操作
a, b, c = 1, 2, 3
# 代替在不同行中创建多个列表
data_1 = []
data_2 = []
data_3 = []
data_4 = []
# 可以在一行中创建它们的多重赋值
data_1, data_2, data_3, data_4 = [], [], [], []
# 或者使用列表理解法
data_1, data_2, data_3, data_4 = [[] for i in range(4)]

原文链接:

https://towardsdatascience.com/7-tips-to-level-up-your-python-code-for-data-science-4a64dbccd86d

总结

加载全部内容

相关教程
猜你喜欢
用户评论