亲宝软件园·资讯

展开

windows PyTorch环境安装 Windows下PyTorch开发环境安装教程

Sakura樱_子于 人气:0

Anaconda安装

  Anaconda是为方便使用python而建立的一个软件包,其包含常用的250多个工具包,多版本python解释器和强大的虚拟环境管理工具,所以Anaconda得名python全家桶。Anaconda可以使安装、运行和升级环境变得更简单,因此推荐安装使用。

安装步骤:

PyCharm安装

  PyCharm是强大的 Python IDE,拥有调试、语法高亮、Project管理、代码跳转、智能提示、版本控制等功能。

安装步骤:

  1. 官网下载安装包 https://www.jetbrains.com/pycharm/,安装包分为专业版(收费)和社区版(免费)。
  2. 运行安装包。
  3. 选择路径,勾选Add launchers dir to the PATH,勾选.py,等待安装完成。

CUDA与CuDNN安装(非必须)

  1. 检查是否有合适GPU,若有,需安装CUDA与CuDNN。只有N卡支持cuda,如下操作可以查看支持的cuda版本:
  2. NVIDIA控制面板→系统信息→组件→3D设置/NVCUDA.DLL
  3. 进入PyTorch官网http://pytorch.org/,点击GetStarted,查看所支持的CUDA版本是多少。
  4. 进入CUDA官网https://developer.nvidia.com/cuda-toolkit-archive,选择相应版本的CUDA,选择相应的操作系统,Installer Type 选择 local。点击下载第一个文件。运行安装包,安装完成不必创建快捷方式。
  5. 验证CUDA是否安装成功:进入安装路径的bin文件夹,复制路径,命令行切换到该路径下(如cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin),然后执行nvcc -V,回车,如果出现相关版本信息,说明正确安装。
  6. 进入cuDNN官网https://developer.nvidia.com/rdp/cudnn-download,注册并登录账号,选择相应版本下载。解压安装包,将里面的三个文件夹复制到CUDA安装路径下(如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1),cuDNN就安装完成了。
  7. 验证cuDNN是否安装成功:命令行切换到安装路径的extras\demo_suite文件夹下,执行bandwidthTest.exe,回车,Result = PASS说明安装成功。继续执行deviceQuery.exe,回车,显示GPU型号,Result = PASS,表示CUDA和cuDNN都安装成功了。

将pip源更换到国内镜像

  使用pip安装python工具包时,由于默认源网速极慢,建议切换国内镜像。
默认源

http://pypi.org/

国内镜像

阿里云 https://mirrors.aliyun.com/pypi/simple/

中国科技大学 http://pypi.mirrors.ustc.edu.cn/simple/

豆瓣(douban) http://pypi.douban.com/simple/

清华大学 http://pypi.tuna.tsinghua.edu.cn/simple/

华中科技大学http://pypi.hustunique.com/

临时使用
  安装命令后接 -i url 即可,如:用清华镜像下载pandas
  pip install pandas -i http://pypi.tuna.tsinghua.edu.cn/simple
永久修改
  修改%HOMEPATH%\pip\pip.ini文件
  %HOMEPATH%通常为C:\Users\xx
  通常需要新建文件夹pip,然后新建文件pip.ini,ini文件可以用记事本打开和编辑,在pip.ini文件中输入以下内容(以豆瓣镜像为例):

  [global]
  index-url = http://pypi.douban.com/simple
  [install]
  trusted-host = pypi.douban.com

PyTorch安装

1. 下载whl文件(非必须)

  进入PyTorch官网http://pytorch.org/,点击GetStarted,选择相应版本,package选择pip,可以看到下方出现了torch和torchvision的最新版本号,以及一个网址https://download.pytorch.org/whl/torch_stable.html,复制网址,进入,可以看见各个版本的torch安装文件,通过这种方式,比直接执行安装命令速度要快。文件命名是有规律的,如:

  cu101/torch-1.4.0-cp37-cp37m-win_amd64.whl,
  cu101/torchvision-0.5.0-cp37-cp37m-win_amd64.whl

  cu后为cuda版本,torch后为torch版本,torchvision后为torchvision版本,cp后为python版本,最后面代表windows64位。

  可以利用快捷键ctrl+F搜索最新版本的torch和torchvision文件(如搜索cu101/torch-1.4.0),再选择相应python版本和平台下载pytorch与torchvision的whl文件,python版本要与系统一致,可以在命令行输入python来查看系统中python的版本。

2. 用PyCharm新建一个项目

  Create New Project→Pure Python→命名→Create
  新建一个脚本:File→New→Python file→命名→回车
  在脚本中输入如下代码→右键→Run ‘项目名' →报错找不到torch,因为在当前环境中,我们没有安装PyTorch。

import torch
print("hello pytorch{}".format(torch.__version__))
print(torch.cuda.is_available())

3. 创建python虚拟环境

  点击下方Terminal→输入conda create -n 虚拟环境名 python=版本号(如conda create -n pytorch_gpu python=3.7)→回车→等待完成

  进入虚拟环境:输入conda activate 虚拟环境名→回车

4. 安装

  进入whl文件所在目录:输入cd whl文件所在目录→回车
  安装:输入pip install torch→按tab键自动补全→回车→等待成功安装
     输入pip install torchvision→按tab键自动补全→回车→等待成功安装

注意: 如果第一步没有下载whl文件,那么直接用pip或conda命令安装,安装命令在PyTorch官网选择相应版本后会显示。

5. 将当前项目关联到新创建的虚拟环境,即选择python解释器

  File→Setting→Project:项目名/Project Interpreter→设置按钮→Add→Conda Environment→Existing environment→interpreter中选择 anaconda安装路径/envs/虚拟环境名/python.exe→OK→OK→OK→稍等片刻进行初始化

6. 验证

  右键运行,成功输出PyTorch版本。如果输出True,证明GPU可用。

总结

加载全部内容

相关教程
猜你喜欢
用户评论