Java中的Unsafe类 一篇看懂Java中的Unsafe类
Ye_yang 人气:0前言
本文主要给大家介绍了关于Java中Unsafe类的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧
1.Unsafe类介绍
Unsafe类是在sun.misc包下,不属于Java标准。但是很多Java的基础类库,包括一些被广泛使用的高性能开发库都是基于Unsafe类开发的,比如Netty、Hadoop、Kafka等。
使用Unsafe可用来直接访问系统内存资源并进行自主管理,Unsafe类在提升Java运行效率,增强Java语言底层操作能力方面起了很大的作用。
Unsafe可认为是Java中留下的后门,提供了一些低层次操作,如直接内存访问、线程调度等。
官方并不建议使用Unsafe。
下面是使用Unsafe的一些例子。
1.1实例化私有类
import java.lang.reflect.Field; import sun.misc.Unsafe; public class UnsafePlayer { public static void main(String[] args) throws Exception { //通过反射实例化Unsafe Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); Unsafe unsafe = (Unsafe) f.get(null); //实例化Player Player player = (Player) unsafe.allocateInstance(Player.class); player.setName("li lei"); System.out.println(player.getName()); } } class Player{ private String name; private Player(){} public String getName() { return name; } public void setName(String name) { this.name = name; } }
1.2CAS操作,通过内存偏移地址修改变量值
java并发包中的SynchronousQueue中的TransferStack中使用CAS更新栈顶。
/ Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long headOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class<?> k = TransferStack.class; headOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("head")); } catch (Exception e) { throw new Error(e); } } //栈顶 volatile SNode head; //更新栈顶 boolean casHead(SNode h, SNode nh) { return h == head && UNSAFE.compareAndSwapObject(this, headOffset, h, nh); }
1.3直接内存访问
Unsafe的直接内存访问:用Unsafe开辟的内存空间不占用Heap空间,当然也不具有自动内存回收功能。做到像C一样自由利用系统内存资源。
2.Unsafe类源码分析
Unsafe的大部分API都是native的方法,主要包括以下几类:
1)Class相关。主要提供Class和它的静态字段的操作方法。
2)Object相关。主要提供Object和它的字段的操作方法。
3)Arrray相关。主要提供数组及其中元素的操作方法。
4)并发相关。主要提供低级别同步原语,如CAS、线程调度、volatile、内存屏障等。
5)Memory相关。提供了直接内存访问方法(绕过Java堆直接操作本地内存),可做到像C一样自由利用系统内存资源。
6)系统相关。主要返回某些低级别的内存信息,如地址大小、内存页大小。
2.1Class相关
//静态属性的偏移量,用于在对应的Class对象中读写静态属性 public native long staticFieldOffset(Field f); public native Object staticFieldBase(Field f); //判断是否需要初始化一个类 public native boolean shouldBeInitialized(Class<?> c); //确保类被初始化 public native void ensureClassInitialized(Class<?> c); //定义一个类,可用于动态创建类 public native Class<?> defineClass(String name, byte[] b, int off, int len, ClassLoader loader, ProtectionDomain protectionDomain); //定义一个匿名类,可用于动态创建类 public native Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches);
2.2Object相关
Java中的基本类型(boolean、byte、char、short、int、long、float、double)及对象引用类型都有以下方法。
//获得对象的字段偏移量 public native long objectFieldOffset(Field f); //获得给定对象地址偏移量的int值 public native int getInt(Object o, long offset); //设置给定对象地址偏移量的int值 public native void putInt(Object o, long offset, int x);
//创建对象,但并不会调用其构造方法。如果类未被初始化,将初始化类。 public native Object allocateInstance(Class<?> cls) throws InstantiationException;
2.3数组相关
/** * Report the offset of the first element in the storage allocation of a * given array class. If {@link #arrayIndexScale} returns a non-zero value * for the same class, you may use that scale factor, together with this * base offset, to form new offsets to access elements of arrays of the * given class. * * @see #getInt(Object, long) * @see #putInt(Object, long, int) */ //返回数组中第一个元素的偏移地址 public native int arrayBaseOffset(Class<?> arrayClass); //boolean、byte、short、char、int、long、float、double,及对象类型均有以下方法 /** The value of {@code arrayBaseOffset(boolean[].class)} */ public static final int ARRAY_BOOLEAN_BASE_OFFSET = theUnsafe.arrayBaseOffset(boolean[].class); /** * Report the scale factor for addressing elements in the storage * allocation of a given array class. However, arrays of "narrow" types * will generally not work properly with accessors like {@link * #getByte(Object, int)}, so the scale factor for such classes is reported * as zero. * * @see #arrayBaseOffset * @see #getInt(Object, long) * @see #putInt(Object, long, int) */ //返回数组中每一个元素占用的大小 public native int arrayIndexScale(Class<?> arrayClass); //boolean、byte、short、char、int、long、float、double,及对象类型均有以下方法 /** The value of {@code arrayIndexScale(boolean[].class)} */ public static final int ARRAY_BOOLEAN_INDEX_SCALE = theUnsafe.arrayIndexScale(boolean[].class);
通过arrayBaseOffset和arrayIndexScale可定位数组中每个元素在内存中的位置。
2.4并发相关
2.4.1CAS相关
CAS:CompareAndSwap,内存偏移地址offset,预期值expected,新值x。如果变量在当前时刻的值和预期值expected相等,尝试将变量的值更新为x。如果更新成功,返回true;否则,返回false。
//更新变量值为x,如果当前值为expected //o:对象 offset:偏移量 expected:期望值 x:新值 public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x); public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x); public final native boolean compareAndSwapLong(Object o, long offset, long expected, long x);
从Java 8开始,Unsafe中提供了以下方法:
//增加 public final int getAndAddInt(Object o, long offset, int delta) { int v; do { v = getIntVolatile(o, offset); } while (!compareAndSwapInt(o, offset, v, v + delta)); return v; } public final long getAndAddLong(Object o, long offset, long delta) { long v; do { v = getLongVolatile(o, offset); } while (!compareAndSwapLong(o, offset, v, v + delta)); return v; } //设置 public final int getAndSetInt(Object o, long offset, int newValue) { int v; do { v = getIntVolatile(o, offset); } while (!compareAndSwapInt(o, offset, v, newValue)); return v; } public final long getAndSetLong(Object o, long offset, long newValue) { long v; do { v = getLongVolatile(o, offset); } while (!compareAndSwapLong(o, offset, v, newValue)); return v; } public final Object getAndSetObject(Object o, long offset, Object newValue) { Object v; do { v = getObjectVolatile(o, offset); } while (!compareAndSwapObject(o, offset, v, newValue)); return v;
2.4.2线程调度相关
//取消阻塞线程 public native void unpark(Object thread); //阻塞线程 public native void park(boolean isAbsolute, long time); //获得对象锁 public native void monitorEnter(Object o); //释放对象锁 public native void monitorExit(Object o); //尝试获取对象锁,返回true或false表示是否获取成功 public native boolean tryMonitorEnter(Object o);
2.4.3volatile相关读写
Java中的基本类型(boolean、byte、char、short、int、long、float、double)及对象引用类型都有以下方法。
//从对象的指定偏移量处获取变量的引用,使用volatile的加载语义 //相当于getObject(Object, long)的volatile版本 public native Object getObjectVolatile(Object o, long offset); //存储变量的引用到对象的指定的偏移量处,使用volatile的存储语义 //相当于putObject(Object, long, Object)的volatile版本 public native void putObjectVolatile(Object o, long offset, Object x);
/** * Version of {@link #putObjectVolatile(Object, long, Object)} * that does not guarantee immediate visibility of the store to * other threads. This method is generally only useful if the * underlying field is a Java volatile (or if an array cell, one * that is otherwise only accessed using volatile accesses). */ public native void putOrderedObject(Object o, long offset, Object x); /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)} */ public native void putOrderedInt(Object o, long offset, int x); /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */ public native void putOrderedLong(Object o, long offset, long x);
2.4.4内存屏障相关
Java 8引入 ,用于定义内存屏障,避免代码重排序。
//内存屏障,禁止load操作重排序,即屏障前的load操作不能被重排序到屏障后,屏障后的load操作不能被重排序到屏障前 public native void loadFence(); //内存屏障,禁止store操作重排序,即屏障前的store操作不能被重排序到屏障后,屏障后的store操作不能被重排序到屏障前 public native void storeFence(); //内存屏障,禁止load、store操作重排序 public native void fullFence();
2.5直接内存访问(非堆内存)
allocateMemory所分配的内存需要手动free(不被GC回收)
//(boolean、byte、char、short、int、long、float、double)都有以下get、put两个方法。 //获得给定地址上的int值 public native int getInt(long address); //设置给定地址上的int值 public native void putInt(long address, int x); //获得本地指针 public native long getAddress(long address); //存储本地指针到给定的内存地址 public native void putAddress(long address, long x); //分配内存 public native long allocateMemory(long bytes); //重新分配内存 public native long reallocateMemory(long address, long bytes); //初始化内存内容 public native void setMemory(Object o, long offset, long bytes, byte value); //初始化内存内容 public void setMemory(long address, long bytes, byte value) { setMemory(null, address, bytes, value); } //内存内容拷贝 public native void copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); //内存内容拷贝 public void copyMemory(long srcAddress, long destAddress, long bytes) { copyMemory(null, srcAddress, null, destAddress, bytes); } //释放内存 public native void freeMemory(long address);
2.6系统相关
//返回指针的大小。返回值为4或8。 public native int addressSize(); /** The value of {@code addressSize()} */ public static final int ADDRESS_SIZE = theUnsafe.addressSize(); //内存页的大小。 public native int pageSize();
3.参考资料
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
加载全部内容