亲宝软件园·资讯

展开

Python cv2 图像自适应灰度直方图均衡化处理 Python cv2 图像自适应灰度直方图均衡化处理方法

Life_XY 人气:0

__author__ = 'Administrator'

import numpy as np
import cv2
 
mri_img = np.load('mri_img.npy')
 
# normalization
mri_max = np.amax(mri_img)
mri_min = np.amin(mri_img)
mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255
mri_img = mri_img.astype('uint8')
 
r, c, h = mri_img.shape
for k in range(h):
 temp = mri_img[:,:,k]
 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
 img = clahe.apply(temp)
 cv2.imshow('mri', np.concatenate([temp,img], 1))
 cv2.waitKey(0)

均衡化前、后对比效果

Python cv2 图像自适应灰度直方图均衡化处理

Python cv2 图像自适应灰度直方图均衡化处理

Python cv2 图像自适应灰度直方图均衡化处理

以上这篇Python cv2 图像自适应灰度直方图均衡化处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

加载全部内容

相关教程
猜你喜欢
用户评论