亲宝软件园·资讯

展开

Python自动生成IEEE格式 用Python代码自动生成文献的IEEE引用格式的实现

白水baishui 人气:0
想了解用Python代码自动生成文献的IEEE引用格式的实现的相关内容吗,白水baishui在本文为您仔细讲解Python自动生成IEEE格式的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Python自动生成IEEE格式,Python自动生成文献,下面大家一起来学习吧。

今天尝试着将引用文献的格式按照IEEE的标准重新排版,感觉手动一条一条改太麻烦,而且很容易出错,所以尝试着用Python写了一个小程序用于根据BibTeX引用格式来生成IEEE引用格式。

先看代码,如下:

import re

def getIeeeJournalFormat(bibInfo):
  """
  生成期刊文献的IEEE引用格式:{作者}, "{文章标题}," {期刊名称}, vol. {卷数}, no. {编号}, pp. {页码}, {年份}.
  :return: {author}, "{title}," {journal}, vol. {volume}, no. {number}, pp. {pages}, {year}.
  """
  # 避免字典出现null值
  if "volume" not in bibInfo:
    bibInfo["volume"] = "null"
  if "number" not in bibInfo:
    bibInfo["number"] = "null"
  if "pages" not in bibInfo:
    bibInfo["pages"] = "null"

  journalFormat = bibInfo["author"] + \
      ", \"" + bibInfo["title"] + \
      ",\" " + bibInfo["journal"] + \
      ", vol. " + bibInfo["volume"] + \
      ", no. " + bibInfo["number"] + \
      ", pp. " + bibInfo["pages"] + \
      ", " + bibInfo["year"] + "."

  # 对格式进行调整,去掉没有的信息,调整页码格式
  journalFormatNormal = journalFormat.replace(", vol. null", "")
  journalFormatNormal = journalFormatNormal.replace(", no. null", "")
  journalFormatNormal = journalFormatNormal.replace(", pp. null", "")
  journalFormatNormal = journalFormatNormal.replace("--", "-")
  return journalFormatNormal

def getIeeeConferenceFormat(bibInfo):
  """
  生成会议文献的IEEE引用格式:{作者}, "{文章标题}, " in {会议名称}, {年份}, pp. {页码}.
  :return: {author}, "{title}, " in {booktitle}, {year}, pp. {pages}.
  """
  conferenceFormat = bibInfo["author"] + \
          ", \"" + bibInfo["title"] + ",\" " + \
          ", in " + bibInfo["booktitle"] + \
          ", " + bibInfo["year"] + \
          ", pp. " + bibInfo["pages"] + "."

  # 对格式进行调整,,调整页码格式
  conferenceFormatNormal = conferenceFormat.replace("--", "-")
  return conferenceFormatNormal

def getIeeeFormat(bibInfo):
  """
  本函数用于根据文献类型调用相应函数来输出ieee文献引用格式
  :param bibInfo: 提取出的BibTeX引用信息
  :return: ieee引用格式
  """
  if "journal" in bibInfo: # 期刊论文
    return getIeeeJournalFormat(bibInfo)
  elif "booktitle" in bibInfo: # 会议论文
    return getIeeeConferenceFormat(bibInfo)

def inforDir(bibtex):
  #pattern = "[\w]+={[^{}]+}"  用正则表达式匹配符合 ...={...} 的字符串
  pattern1 = "[\w]+=" # 用正则表达式匹配符合 ...= 的字符串
  pattern2 = "{[^{}]+}" # 用正则表达式匹配符合 内层{...} 的字符串

  # 找到所有的...=,并去除=号
  result1 = re.findall(pattern1, bibtex)
  for index in range(len(result1)) :
    result1[index] = re.sub('=', '', result1[index])
  # 找到所有的{...},并去除{和}号
  result2 = re.findall(pattern2, bibtex)
  for index in range(len(result2)) :
    result2[index] = re.sub('\{', '', result2[index])
    result2[index] = re.sub('\}', '', result2[index])

  # 创建BibTeX引用字典,归档所有有效信息
  infordir = {}
  for index in range(len(result1)):
    infordir[result1[index]] = result2[index]
  return infordir

def inputBibTex():
  """
  在这里输入BibTeX格式的文献引用信息
  :return:提取出的BibTeX引用信息
  """
  bibtex = []
  print("请输入BibTeX格式的文献引用:")
  i = 0
  while i < 15: # 观察可知BibTeX格式的文献引用不会多于15行
    lines = input()
    if len(lines) == 0: # 如果输入空行,则说明引用内容已经输入完毕
      break
    else:
      bibtex.append(lines)
    i += 1
  return inforDir("".join(bibtex))

if __name__ == '__main__':
  bibInfo = inputBibTex() # 获得BibTeX格式的文献引用
  print(getIeeeFormat(bibInfo)) # 输出ieee格式

下面我来详细说说这个代码怎么使用。

首先,我们需要获取到文献的BibTeX引用格式,可以在百度学术,或者谷歌学术的应用栏中找到,例如这里以谷歌学术举例:

在这里插入图片描述

在搜索框搜索论文:Reinforcement learning to rank in e-commerce search engine: Formalization, analysis, and application,跳转到以下页面:

在这里插入图片描述

点击“引用”,再点击“BibTex”

在这里插入图片描述

跳转到以下页面,复制所有字符串

在这里插入图片描述

运行我们上面给出的代码,在交互窗口把我们复制的字符串粘贴过去:

在这里插入图片描述

之后点击两下回车,即可得到IEEE格式的文献引用了:

这里我分了会议论文和期刊论文种格式,大家如果想要其他引用格式,可以在我的代码的基础上进行增删改,下面我放一些引用格式转换的例子:

会议论文1:

Reinforcement learning to rank in e-commerce search engine: Formalization, analysis, and application

BibTeX格式:

@inproceedings{hu2018reinforcement,
title={Reinforcement learning to rank in e-commerce search engine: Formalization, analysis, and application},
author={Hu, Yujing and Da, Qing and Zeng, Anxiang and Yu, Yang and Xu, Yinghui},
booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
pages={368–377},
year={2018}
}

IEEE格式:

Hu, Yujing and Da, Qing and Zeng, Anxiang and Yu, Yang and Xu, Yinghui, “Reinforcement learning to rank in e-commerce search engine: Formalization, analysis, and application,” , in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, pp. 368-377.

会议论文2:

A contextual-bandit approach to personalized news article recommendation

BibTeX格式:

@inproceedings{li2010contextual,
title={A contextual-bandit approach to personalized news article recommendation},
author={Li, Lihong and Chu, Wei and Langford, John and Schapire, Robert E},
booktitle={Proceedings of the 19th international conference on World wide web},
pages={661–670},
year={2010}
}

IEEE格式:

Li, Lihong and Chu, Wei and Langford, John and Schapire, Robert E, “A contextual-bandit approach to personalized news article recommendation,” , in Proceedings of the 19th international conference on World wide web, 2010, pp. 661-670.

期刊论文1:

Infrared navigation-Part I: An assessment of feasibility

BibTeX格式:

@article{duncombe1959infrared,
title={Infrared navigation—Part I: An assessment of feasibility},
author={Duncombe, JU},
journal={IEEE Trans. Electron Devices},
volume={11},
number={1},
pages={34–39},
year={1959}
}

IEEE格式:

Duncombe, JU, “Infrared navigation—Part I: An assessment of feasibility,” IEEE Trans. Electron Devices, vol. 11, no. 1, pp. 34-39, 1959.

期刊论文2(arXiv):

Reinforcement learning for slate-based recommender systems: A tractable decomposition and practical methodology

BibTeX格式:

@article{ie2019reinforcement,
title={Reinforcement learning for slate-based recommender systems: A tractable decomposition and practical methodology},
author={Ie, Eugene and Jain, Vihan and Wang, Jing and Narvekar, Sanmit and Agarwal, Ritesh and Wu, Rui and Cheng, Heng-Tze and Lustman, Morgane and Gatto, Vince and Covington, Paul and others},
journal={arXiv preprint arXiv:1905.12767},
year={2019}
}

IEEE格式:

Ie, Eugene and Jain, Vihan and Wang, Jing and Narvekar, Sanmit and Agarwal, Ritesh and Wu, Rui and Cheng, Heng-Tze and Lustman, Morgane and Gatto, Vince and Covington, Paul and others, “Reinforcement learning for slate-based recommender systems: A tractable decomposition and practical methodology,” arXiv preprint arXiv:1905.12767, 2019.

加载全部内容

相关教程
猜你喜欢
用户评论