opencv pytesseract 验证码识别 python opencv pytesseract 验证码识别的实现
叶庭云 人气:0想了解python opencv pytesseract 验证码识别的实现的相关内容吗,叶庭云在本文为您仔细讲解opencv pytesseract 验证码识别的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:opencv,pytesseract,验证码识别,opencv,pytesseract,验证码,下面大家一起来学习吧。
一、环境配置
需要 pillow 和 pytesseract 这两个库,pip install 安装就好了。
install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
安装好Tesseract-OCR.exe
pytesseract 库的配置:搜索找到pytesseract.py,打开该.py文件,找到 tesseract_cmd,改变它的值为刚才安装 tesseract.exe 的路径。
二、验证码识别
识别验证码,需要先对图像进行预处理,去除会影响识别准确度的线条或噪点,提高识别准确度。
实例1
import cv2 as cv import pytesseract from PIL import Image def recognize_text(image): # 边缘保留滤波 去噪 dst = cv.pyrMeanShiftFiltering(image, sp=10, sr=150) # 灰度图像 gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY) # 二值化 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) # 形态学操作 腐蚀 膨胀 erode = cv.erode(binary, None, iterations=2) dilate = cv.dilate(erode, None, iterations=1) cv.imshow('dilate', dilate) # 逻辑运算 让背景为白色 字体为黑 便于识别 cv.bitwise_not(dilate, dilate) cv.imshow('binary-image', dilate) # 识别 test_message = Image.fromarray(dilate) text = pytesseract.image_to_string(test_message) print(f'识别结果:{text}') src = cv.imread(r'./test/044.png') cv.imshow('input image', src) recognize_text(src) cv.waitKey(0) cv.destroyAllWindows()
运行效果如下:
识别结果:3n3D
Process finished with exit code 0
实例2
import cv2 as cv import pytesseract from PIL import Image def recognize_text(image): # 边缘保留滤波 去噪 blur =cv.pyrMeanShiftFiltering(image, sp=8, sr=60) cv.imshow('dst', blur) # 灰度图像 gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY) # 二值化 ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU) print(f'二值化自适应阈值:{ret}') cv.imshow('binary', binary) # 形态学操作 获取结构元素 开操作 kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 2)) bin1 = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel) cv.imshow('bin1', bin1) kernel = cv.getStructuringElement(cv.MORPH_OPEN, (2, 3)) bin2 = cv.morphologyEx(bin1, cv.MORPH_OPEN, kernel) cv.imshow('bin2', bin2) # 逻辑运算 让背景为白色 字体为黑 便于识别 cv.bitwise_not(bin2, bin2) cv.imshow('binary-image', bin2) # 识别 test_message = Image.fromarray(bin2) text = pytesseract.image_to_string(test_message) print(f'识别结果:{text}') src = cv.imread(r'./test/045.png') cv.imshow('input image', src) recognize_text(src) cv.waitKey(0) cv.destroyAllWindows()
运行效果如下:
二值化自适应阈值:181.0
识别结果:8A62N1Process finished with exit code 0
实例3
import cv2 as cv import pytesseract from PIL import Image def recognize_text(image): # 边缘保留滤波 去噪 blur = cv.pyrMeanShiftFiltering(image, sp=8, sr=60) cv.imshow('dst', blur) # 灰度图像 gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY) # 二值化 设置阈值 自适应阈值的话 黄色的4会提取不出来 ret, binary = cv.threshold(gray, 185, 255, cv.THRESH_BINARY_INV) print(f'二值化设置的阈值:{ret}') cv.imshow('binary', binary) # 逻辑运算 让背景为白色 字体为黑 便于识别 cv.bitwise_not(binary, binary) cv.imshow('bg_image', binary) # 识别 test_message = Image.fromarray(binary) text = pytesseract.image_to_string(test_message) print(f'识别结果:{text}') src = cv.imread(r'./test/045.jpg') cv.imshow('input image', src) recognize_text(src) cv.waitKey(0) cv.destroyAllWindows()
运行效果如下:
二值化设置的阈值:185.0
识别结果:7364Process finished with exit code 0
加载全部内容