Spring Cloud Data Flow部署在Kubernetes 怎样把Spring Cloud Data Flow部署在Kubernetes上
南瓜慢说 人气:01 前言
Spring Cloud Data Flow
在本地跑得好好的,为什么要部署在Kubernetes
上呢?主要是因为Kubernetes
能提供更灵活的微服务管理;在集群上跑,会更安全稳定、更合理利用物理资源。
Spring Cloud Data Flow
入门简介请参考:Spring Cloud Data Flow初体验,以Local模式运行
2 部署Data Flow到Kubernetes
以简单为原则,我们依然是基于Batch
任务,不部署与Stream
相关的组件。
2.1 下载GitHub代码
我们要基于官方提供的部署代码进行修改,先把官方代码clone下来:
$ git clone https://github.com/spring-cloud/spring-cloud-dataflow.git
我们切换到最新稳定版本的代码版本:
$ git checkout v2.5.3.RELEASE
2.2 创建权限账号
为了让Data Flow Server
有权限来跑任务,能在Kubernetes
管理资源,如新建Pod
等,所以要创建对应的权限账号。这部分代码与源码一致,不需要修改:
(1)server-roles.yaml
kind: Role apiVersion: rbac.authorization.k8s.io/v1 metadata: name: scdf-role rules: - apiGroups: [""] resources: ["services", "pods", "replicationcontrollers", "persistentvolumeclaims"] verbs: ["get", "list", "watch", "create", "delete", "update"] - apiGroups: [""] resources: ["configmaps", "secrets", "pods/log"] verbs: ["get", "list", "watch"] - apiGroups: ["apps"] resources: ["statefulsets", "deployments", "replicasets"] verbs: ["get", "list", "watch", "create", "delete", "update", "patch"] - apiGroups: ["extensions"] resources: ["deployments", "replicasets"] verbs: ["get", "list", "watch", "create", "delete", "update", "patch"] - apiGroups: ["batch"] resources: ["cronjobs", "jobs"] verbs: ["create", "delete", "get", "list", "watch", "update", "patch"]
(2)server-rolebinding.yaml
kind: RoleBinding apiVersion: rbac.authorization.k8s.io/v1beta1 metadata: name: scdf-rb subjects: - kind: ServiceAccount name: scdf-sa roleRef: kind: Role name: scdf-role apiGroup: rbac.authorization.k8s.io
(3)service-account.yaml
apiVersion: v1 kind: ServiceAccount metadata: name: scdf-sa
执行以下命令,创建对应账号:
$ kubectl create -f src/kubernetes/server/server-roles.yaml $ kubectl create -f src/kubernetes/server/server-rolebinding.yaml $ kubectl create -f src/kubernetes/server/service-account.yaml
执行完成后,可以检查一下:
$ kubectl get role NAME AGE scdf-role 119m $ kubectl get rolebinding NAME AGE scdf-rb 117m $ kubectl get serviceAccount NAME SECRETS AGE default 1 27d scdf-sa 1 117m
2.3 部署MySQL
可以选择其它数据库,如果本来就有数据库,可以不用部署,在部署Server
的时候改一下配置就好了。这里跟着官方的Guide来。为了保证部署不会因为镜像下载问题而失败,我提前下载了镜像:
$ docker pull mysql:5.7.25
MySQL
的yaml
文件也不需要修改,直接执行以下命令即可:
$ kubectl create -f src/kubernetes/mysql/
执行完后检查一下:
$ kubectl get Secret NAME TYPE DATA AGE default-token-jhgfp kubernetes.io/service-account-token 3 27d mysql Opaque 2 98m scdf-sa-token-wmgk6 kubernetes.io/service-account-token 3 123m $ kubectl get PersistentVolumeClaim NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE mysql Bound pvc-e95b495a-bea5-40ee-9606-dab8d9b0d65c 8Gi RWO hostpath 98m $ kubectl get Deployment NAME READY UP-TO-DATE AVAILABLE AGE mysql 1/1 1 1 98m $ kubectl get Service NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE mysql ClusterIP 10.98.243.130 <none> 3306/TCP 98m
2.4 部署Data Flow Server
2.4.1 修改配置文件server-config.yaml
删除掉不用的配置,主要是Prometheus
和Grafana
的配置,结果如下:
apiVersion: v1 kind: ConfigMap metadata: name: scdf-server labels: app: scdf-server data: application.yaml: |- spring: cloud: dataflow: task: platform: kubernetes: accounts: default: limits: memory: 1024Mi datasource: url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/mysql username: root password: ${mysql-root-password} driverClassName: org.mariadb.jdbc.Driver testOnBorrow: true validationQuery: "SELECT 1"
2.4.2 修改server-svc.yaml
因为我是本地运行的Kubernetes
,所以把Service
类型从LoadBalancer
改为NodePort
,并配置端口为30093
。
kind: Service apiVersion: v1 metadata: name: scdf-server labels: app: scdf-server spring-deployment-id: scdf spec: # If you are running k8s on a local dev box or using minikube, you can use type NodePort instead type: NodePort ports: - port: 80 name: scdf-server nodePort: 30093 selector: app: scdf-server
2.4.3 修改server-deployment.yaml
主要把Stream
相关的去掉,如SPRING_CLOUD_SKIPPER_CLIENT_SERVER_URI
配置项:
apiVersion: apps/v1 kind: Deployment metadata: name: scdf-server labels: app: scdf-server spec: selector: matchLabels: app: scdf-server replicas: 1 template: metadata: labels: app: scdf-server spec: containers: - name: scdf-server image: springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE imagePullPolicy: IfNotPresent volumeMounts: - name: database mountPath: /etc/secrets/database readOnly: true ports: - containerPort: 80 livenessProbe: httpGet: path: /management/health port: 80 initialDelaySeconds: 45 readinessProbe: httpGet: path: /management/info port: 80 initialDelaySeconds: 45 resources: limits: cpu: 1.0 memory: 2048Mi requests: cpu: 0.5 memory: 1024Mi env: - name: KUBERNETES_NAMESPACE valueFrom: fieldRef: fieldPath: "metadata.namespace" - name: SERVER_PORT value: '80' - name: SPRING_CLOUD_CONFIG_ENABLED value: 'false' - name: SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED value: 'true' - name: SPRING_CLOUD_DATAFLOW_FEATURES_SCHEDULES_ENABLED value: 'true' - name: SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API value: 'true' - name: SPRING_CLOUD_KUBERNETES_SECRETS_PATHS value: /etc/secrets - name: SPRING_CLOUD_KUBERNETES_CONFIG_NAME value: scdf-server - name: SPRING_CLOUD_DATAFLOW_SERVER_URI value: 'http://${SCDF_SERVER_SERVICE_HOST}:${SCDF_SERVER_SERVICE_PORT}' # Add Maven repo for metadata artifact resolution for all stream apps - name: SPRING_APPLICATION_JSON value: "{ \"maven\": { \"local-repository\": null, \"remote-repositories\": { \"repo1\": { \"url\": \"https://repo.spring.io/libs-snapshot\"} } } }" initContainers: - name: init-mysql-wait image: busybox command: ['sh', '-c', 'until nc -w3 -z mysql 3306; do echo waiting for mysql; sleep 3; done;'] serviceAccountName: scdf-sa volumes: - name: database secret: secretName: mysql
2.4.4 部署Server
完成文件修改后,就可以执行以下命令部署了:
# 提前下载镜像 $ docker pull springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE # 部署Data Flow Server $ kubectl create -f src/kubernetes/server/server-config.yaml $ kubectl create -f src/kubernetes/server/server-svc.yaml $ kubectl create -f src/kubernetes/server/server-deployment.yaml
执行完成,没有错误就可以访问:http://localhost:30093/dashboard/
3 运行一个Task
检验是否部署成功最简单的方式就是跑一个任务试试。还是按以前的步骤,先注册应用,再定义Task
,然后执行。
我们依旧使用官方已经准备好的应用,但要注意这次我们选择是的Docker
格式,而不是jar
包了。
成功执行后,查看Kubernetes
的Dashboard
,能看到一个刚创建的Pod
:
4 总结
本文通过一步步讲解,把Spring Cloud Data Flow
成功部署在了Kubernetes
上,并成功在Kubenetes
上跑了一个任务,再也不再是Local
本地单机模式了。
加载全部内容